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Abstract: Major advances in modeling and control are required to 

meet future technical challenges in polymers manufacturing. This 

work investigates the recent applications of artificial neural network 

(ANN) in modeling the carbonyl groups during photo-thermal and 

thermal aging of PE, LDPE, PP, PVC, PS and EPDM. A set of 2450 

data points for carbonyl index (CI) contains 15 polymer systems 

which are 5 pure, 5 binary, 3 tertiary and 2 quaternary systems, and 

577 data points for concentration of carbonyl ([CO])including 4 

systems, within 1 pure, 1 binary, 1 tertiary and 1 quaternary system, 

were used to test the neural networks proficiency. For the most 

promising neural network models, the predicted carbonyl index and 

concentration of carbonyl values of the total dataset were compared 

to measured carbonyl index and concentration of carbonyl values; 

good correlations were found (R= 0.9471 for ANN1 and R= 0.9830 

for ANN2). The root mean square errors for the total dataset were 

0.0958 and 0.0291 mol/l for CI and [CO] respectively. The 

comparison between the first and the second model proves the 

importance of the common properties of polymers and their additives 

in order to distinguish them. 
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I. Introduction 

 

The polymers can be of natural and synthetic 

origin, presented in very various forms liquid to the 

solid used as a material of the structure. Among 

various polymers, polyethylene (PE), low-density 

polyethylene (LDPE), polypropylene (PP), 

poly(vinyl chloride) (PVC), polystyrene (PS) and 

ethylene propylene diene monomer (EPDM) are 

synthetic plastic and rubber produced at an 

industrial scale. There is a growing market for the 

production of polymers due to their low cost and 

increased use; and the very wide range of 

applications of the polymeric materials explains  

 

 

 

why their study quickly became a very important 

subject. 

Polymer materials possess some advantages, for 

instance, light-weight, high strength, anti-rust, and 

easily processable characters that differentiate them 

from inorganic materials and metals [1]. Whereas, 

among of the disadvantages of the use of polymers 

is that they degrade when they are subjected to the 

aggression of environmental factors, such as 

abrasion, heat, light, radiation and the action/impact 

of chemicals or micro-organisms. These factors 

cause the aging of polymeric materials. 

Aging, as explained in the literature [2–6], is a 

process that occurs in polymeric materials during a 
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specified period of time, and that usually results in 

changes in physical and/or chemical structure and 

consequently alters the properties of the polymeric 

material. Colin and coworkers [7] defined aging as 

a slow and irreversible variation as a function of 

time (in use conditions) of a material structure, 

morphology or composition leading to a detrimental 

change in its use properties. There are a wide 

variety of polymer aging types. The different types 

of aging, defined according to the main 

environmental aging stress, can be classified into 

two main categories: physical or chemical. The 

aging of polymeric materials (under the action of 

heat, UV radiation and oxygen) follows radical 

processes which lead to the formation of oxidized 

chemical functions such as alcohols, ketones, 

carboxylic acids and reduces molecular mass, 

resulting in the deterioration of mechanical 

properties and the creation of unnecessary materials 

under unpredictable weather conditions [6,8]. 

Carbonyl groups have been used to 

evaluate/measure the amount of polymers 

degradation during ultraviolet radiation and heat in 

the presence of oxygen over the time. Growth of 

carbonyl groups indicates extent of polymer 

degradation. Polymers are commonly protected 

against such deterioration by the addition of 

antioxidants, light and heat stabilizers [9]. Almost 

all synthetic plastics require stabilization against 

adverse environmental effects. It is necessary to 

find means to reduce or prevent damage induced by 

environmental components such as heat, light or 

oxygen [10]. 

Aging is a complex problem to study in practice 

because it usually proceeds slowly in smooth 

service conditions of materials, and lifetime reaches 

typically several dozens of years. It is therefore not 

advisable to test and qualify polymeric materials for 

a given application on a natural aging foundation 

[7]. The very particular field of aging of polymer 

materials does not escape the attempts of modeling, 

and industrial demand is strong for the development 

of numerical calculation tools allowing to criticize 

and enhance the representativeness of accelerated 

aging testing methodologies and to predict the 

lifetime of polymer materials [11]. 

Many researchers have adopted artificial 

intelligence approaches to predict material 

behaviors, characteristics and attributes under 

changing circumstances [12]. These approaches, 

such as Artificial Neural Networks (ANN), has 

received much attention as a computational 

approach providing an alternative and 

complementary way for modeling, due to its ability 

to cope with complex and ill-defined problems in 

many scientific fields, for example: in the modeling 

of solar radiation variables [13], modeling of an 

industrial process of pleuromutilin fermentation 

[14], prediction of acute herbicide toxicity [15],  

and prediction of the rejection of organic 

compounds [16], etc., where the ANN models knew 

a very promising development which improved the 

performance of the existing statistical approaches 

[17]. 

An ANN does not require the explicit expression of 

the physical meaning of the system or process 

under study and is considered as belonging to the 

group of "black box" models. These models make 

possible the study of the relationship between the 

input and output variables of the process with only 

a limited number of experimental runs [18, 19]. 

ANN techniques open new possibilities in 

classifying and generalizing available experimental 

results [20]. The ANN approach was recently 

introduced into the field of wear of polymers and it 

was shown that ANN is a helpful mathematical tool 

in the structure–property analysis of polymers 

based on a limited number of measurement results 

[21–25]. 

To the best of our knowledge, no studies have been 

reported in the literature that has used ANN for 

modeling the carbonyl groups during photo-thermal 

and thermal aging of the polymers (PP, LDPE, 

PVC, PS, PE and EPDM) in the presence of 

additives (antioxidants, stabilizers and pigments…). 

The objective of the present study is to develop 

methodologies based on neural networks for the 

modeling of the photo-thermal and thermal aging 

process and this for the purpose of prediction of 

parameters' evolutions, which are difficult to 

measure online (carbonyl index and concentration 

of carbonyl), using easily measurable variables. For 

this, two neural models of feed-forward type were 

constructed. 

 

II. Methodology and modeling  

The procedure of modeling of carbonyl groups in 

polymers under the action of radiation and/or 

temperature (photo-thermal and thermal aging) 

includes four essential steps: collection of 

experimental data as complete as possible, 

pretreatment and analysis of the data, choice of the 

parameters of the neural network and saving ANN 

parameters. 

II.1. Artificial neural networks 

Artificial neural networks (ANNs) are information 

processing systems that have specific performance 

characteristics that are similar to biological neural 

networks [20]. To suggest an ANN model, 

experimental results should be available [25]. The 

great advantages of these models is their ability to 

learn (store experimental knowledge), generalize 

(make the knowledge available) or extract 

automatically rules from complex data [26]. One of 

the most popular neural network paradigms applied 

to the modeling of a wide range of nonlinear 

systems, is the feed-forward back propagation 

neural network (FFNN) [27], which has been used 

throughout this paper with forecasting horizon and 

supervised learning. 
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The fundamental unit or building block of the ANN is called an artificial neuron [22]. The neurons are 

arranged in layers and are interconnected by 

weights and biases between the layers. The input 

layer receives inputs (𝑥𝑖) from the real world and 

each succeeding layer receives weighted outputs 

(𝑤𝑗𝑖, 𝑥𝑖) from the preceding layer as its input 

resulting therefore a feed-forward ANN, in which 

each input is feed-forward to its succeeding layer 

where it is treated. The outputs of the last layer 

constitute the outputs (𝑦𝑗) to the real world. A 

schematic representation of a feed-forward MLP 

neural network is shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Three layers feed-forward neural network 

 

The output is computed by means of a transfer 

function, also called activation function. It is 

desirable that the activation function has a sort of 

step behavior. Furthermore, because continuity and 

derivability at all points are required features of the 

current optimization algorithms, typical activation 

functions which fulfill these requirements are [28]: 

Hyperbolic tangent sigmoid (tansig): (𝑎) =
𝑒𝑎−𝑒−𝑎

𝑒𝑎+𝑒−𝑎
 , 

logarithmic sigmoid (logsig): 𝑓(𝑎) =
1

1+𝑒−𝑎
 , pure 

linear (purelin): 𝑓(𝑎) = 𝑎, exponential 

(exponential): 𝑓(𝑎) = 𝑒−𝑎 and sin transfer function 

(sine): 𝑓(𝑎) = sin⁡(𝑎). 

II.2. Data collection, division, pretreatment and 

analysis 

The experimental data used for this work has been 

reported by [29–41]. The total database collected 

from the literature was divided into two parts based 

on the effect of radiation and/or temperature on the 

various polymer systems.  

(1) The first data set "D1" is used to predict the 

evolution of carbonyl index (CI) during photo-

thermal aging of the systems polymers (PP, LDPE, 

PVC, PS and PE). The inputs considered for this 

database are: aging time (h), aging conditions (The 

power of the radiation source (kw) and temperature 

(°C)), the percentage concentrations of polymers 

and additives (X1 (% w/w), X2 (% w/w), X3 (% 

w/w), X4 (% w/w)), pseudo density of the polymers 

(g/cm3) and thickens film (µm).  

(2) The second data set "D2" is used to follow the 

evolution of concentration of carbonyl [CO] during 

thermal aging of the systems polymers (PE and 

EPDM). The inputs chosen for this database are: 

aging time (h), temperature (°C), the percentage 

concentrations of polymers and additives (X1 (% 

w/w), X2 (% w/w), X3 (% w/w), X4 (% w/w)) and 

pseudo molecular weights (kg/mol) of polymers 

and additives. 

The choice of the input and output variables was 

based on the effect of aging conditions (radiation 

and/or temperature) on the carbonyl groups as a 

function of aging time, the need to describe the 

different polymer systems (polymers and polymers 

with additives) and the necessity to differentiate 

between the carbonyl groups data of several 

polymeric systems. Carbonyl groups have been 

used to evaluate/measure the amount of polymers 
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degradation during ultraviolet radiation and heat in 

the presence of oxygen over the time. Growth of 

carbonyl groups indicates extent of polymer 

degradation [42, 43]. 

The pseudo density of the polymers (g/cm3) was 

calculated as follows:    

 𝜌𝑝 = ∑ 𝜌𝑖𝑥𝑖
𝑛
𝑖=1                                                      (1) 

where⁡𝜌𝑖 is the density of the pure polymers (g/cm3) 

which are presented in Table1 and⁡𝑥𝑖 represents the 

percentage concentration of polymers and additives. 

It can be seen that the percentage concentrations of 

additives are small and do not exceed 2%, and the 

density of these additives is negligible, for that we 

seize the density of the polymers is taken as a 

differentiation parameter between the different 

polymer systems. 

Therefore: 𝜌𝑝 = 𝜌1𝑥1                                          (2)                                                                                                                                                                                                       

 𝜌198% < 𝜌𝑝 < 𝜌1100%                                                                                                                                    

The Pseudo molecular weight (Kg/mol) is defined 

by the following relationship: 

 𝑀𝑤𝑝 = ∑ 𝑀𝑤𝑖𝑥𝑖
𝑛
𝑖=1                                            (3)                                                                                                                            

Where 𝑀𝑤𝑖 is the molecular weights of the 

polymers and additives (Kg/mol), given in Table 1. 

Whereas n=1 for pure systems, n=2 for binary 

systems, n=3 for ternary systems and n=4 for 

quaternary systems. The pseudo molecular weight 

is used to distinguish between polymers and 

additives (EPDM, PE, Irganox 1010, Chimassorb 

944 and Peroxyde de dicumyle). 

Table 1. Density of polymers and molecular weight used for calculating pseudo density and pseudo molecular 

weight of polymer systems 

 

D1 D2 

Polymers Density 

ρ(g/cm3) 

Reference Polymer  and 

additive 

Molecular weights 

MW (Kg/mol) 

Reference 

PE 
0.932 [44] EPDM 150 [40] 

LDPE 0.92 [45] PE 220 [41] 

PVC 1.4 [41] Irganox 1010 1.178  

 

 

[40] 
PP 0.905 [46] Chimassorb 

944 

2-3.1 

PS 1.06 [47] Dicumyl 

peroxide 

0.27037 

 

Figure S1 (see supplementary data) display the 

numbers of polymer systems used in the data sets 

(D1 and D2) and explain the method of calculation 

of the percentages concentration of different 

polymers and additives. 

 X1: is the percentage concentration of pure 

polymers (PVC, PS, PP, LDPE, PE and EPDM); 

X2, X3, X4: percentage concentrations of additives, 

irrespective of the type of additives. 

The source and range of the inputs and outputs 

variables for each polymer system are summarized 

in Tables S1 and S2 (see supplementary data). 

II.3. Model development 

The whole first database was randomly split into 

three subsets: 1716 data points (70%) for the 

training phase, 367 points (15%) for the validation 

phase and 367 data points (15%) for the testing  

 

phase of the model (ANN1). Similarly, the second 

data set is randomly divided into three subgroups: 

347 data points (60%) for the training phase, 115    

 

points (20%) for the validation step and 115 data 

points (20%) for the testing phase of the model 

(ANN2). The validation set is used in parallel with 

the training set.  

The tow ANNs contain three layers of neurons: the 

input layer has nine neurons for ANN1 and seven 

neurons for ANN2, a one hidden layer with a 

number of active neurons optimized during 

training, and one output layer with one unit that 

generated the value of CI for ANN1 and [CO] for 

ANN2. The number of neurons in the hidden layer 

varies depending on the performance of the 

network during the training phase. Primarily, the 

number of hidden neurons was selected within a 

range of 3 to 35 neurons. The tansig, the logsig, the 

exponential, the purelin and the sine transfer 

functions were used in the hidden layer and the 

output layer. The training algorithm used in this 

work is the quasi-Newton BFGS (Broyden–

Fletcher–Goldfarb–Shanno) algorithm. For each 
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ANN, the optimal hidden neurons and transfer 

function were selected by trial and error process. 

The ANNs modeling of the carbonyl groups during 

photo-thermal and thermal aging of the polymers 

(PE, LDPE, PP, PVC, PS and EPDM) was 

performed using STATISTICA software. 

 

III. Results and discussion 

III.1. Models performances 

In the present study, two neural network models 

were developed with the aim of predicting the CI 

and [CO]. Table 2 shows the structure of the 

optimized ANN models.  

Table 2. Structures of the optimized ANN models 

 

 

ANN 

models 

 

Training 

algorithm 

Input layer 
Hidden layer Output layer 

Neurons 

Number 

Neurons 

number 

Activation 

function 

Neurons 

number 

Activation 

function 

ANN1 BFGS quasi-

Newton 

(trainbfg) 

 

09 21 Tansig  01 

 

Sine 

ANN2 07 11 Exponential 01 Logsig 

  

The plot and the parameters of the linear regression 

were, straight forwardly, obtained using, "Postreg" 

MATLAB function. Figures 2 show the total 

agreement plots for the carbonyl index and 

concentration of carbonyl with agreement vectors 

approaching the ideal, ([α, β, R] = [0.9994, 

9.9025e-4, 0.9471] for the total database) for CI; 

([α, β, R] = [0.9700, 0.0058, 0.9830] for the total 

database) for [CO]. 

 

 

 

(a)                                                                           (b) 

Figure 2. Regression analysis plot for the optimum model between experimental and calculated (a): carbonyl 

index and (b): concentration of carbonyl. 
 

Table 3 shows the vectors of linear regression for 

the neural models (ANN1 and ANN2). Clearly, the 

proposed neuronal approach gives satisfactory 

results with regression vector values approaching 

the ideal [α =1 (slope), β =0 (y intercept), R=1 

(correlation coefficient)] in the adjustment of the 

profiles of ANN1 and ANN2. The performance of 

each model was evaluated in terms of correlation 
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coefficient (R) and root mean square error (RMSE). 

This last was used to determine the modeling error 

between the models' calculated and experimental 

values of responses. RMSE is defined as follows 

[48–50]: 

  𝑅𝑀𝑆𝐸 = √∑
𝑌𝑖,𝑒𝑥𝑝−𝑌𝑖,𝑐𝑎𝑙)

2

𝑛

𝑛(

𝑖=1                            (4) 

where n is the total number of data points; Yi, exp is 

the experimental value and Yi, cal represents the 

calculated value from the neural network models.

Table 3. Linear regression vectors [Linear Equation: 𝑌𝑖,𝑐𝑎𝑙 = 𝛼𝑌𝑖,𝑒𝑥𝑝 + 𝛽] 

 

 α β R RMSE 

 

 

ANN1 

Training phase 1.0012 3.9710e-07 0.9512 0.0951 

Validation phase 0.9705 0.0094 0.9326 0.1098 

Test phase 1.0212 -0.0029 0.9427 0.1058 

Total 0.9994 9.9025e-4 0.9471 0.0958 

 

ANN2 

Training phase 0.9977 0.0046 0.9854 0.0022 

Validation phase 0.9886 0.0055 0.9887 0.0018 

Test phase 0.9901 0.0050 0.9722 0.0309 

Total 0.9700 0.0054 0.9830 0.0291 

 

The weights and bias of the optimized ANN models 

are listed in Table S3 and S4 (see supplementary 

data) where 𝑊𝐼 is the input and hidden layer 

connection weight matrix, 𝑊𝐻  is the hidden and 

output layer connection weight matrix, ⁡𝑏𝐻 is the 

hidden neurons bias and ⁡𝑏𝑂 is the output neuron 

bias. From the optimized ANN1 and ANN2, we can 

express carbonyl index and concentration of 

carbonyl by a mathematical models that 

incorporates all inputs 𝑥𝑖 (time, the power of the 

radiation source, temperature, X1, X2, X3, X4, 

thickness film and pseudo density) for ANN1 and 

(time, temperature, X1, X2, X3, X4 and pseudo 

molecular weight) for ANN2 within it as follows: 

 

The instance outputs⁡Zj of the hidden layer (ANN1) 

                                𝑍𝑗 = 𝑓𝐻[∑ 𝑤𝑗𝑖
𝐼 𝑥𝑖

9
𝑖=1 + 𝑏𝑗

𝐻] =
𝑒𝑥𝑝(∑ 𝑤𝑗𝑖

𝐼 𝑥𝑖
9
𝑖=1 +𝑏𝑗

𝐻)−𝑒𝑥𝑝⁡(−∑ 𝑤𝑗𝑖
𝐼 𝑥𝑖

9
𝑖=1 +𝑏𝑗

𝐻)

𝑒𝑥𝑝(∑ 𝑤𝑗𝑖
𝐼 𝑥𝑖

9
𝑖=1 +𝑏𝑗

𝐻)+𝑒𝑥𝑝⁡(−∑ 𝑤𝑗𝑖
𝐼 𝑥𝑖

9
𝑖=1 +𝑏𝑗

𝐻)
                                      (5)

j=1, 2, 3,…21. The output CI: 

                                         𝐶𝐼⁡ = 𝑓𝑂[∑ 𝑤1𝑗⁡
𝐻 𝑍𝑗

21
𝑗=1 + 𝑏𝑘

𝑂] = 𝑠𝑖 𝑛(∑ 𝑤1𝑗
𝐻 ⁡𝑍𝑖

21
𝑗=1 + 𝑏𝑘

𝑂)                                               (6) 

The combination of equations 5 and 6 leads to the mathematical formula for carbonyl index taking into account 

all the inputs  𝑥𝑖: 

                                𝐶𝐼⁡ = 𝑠𝑖 𝑛 (∑ 𝑤1𝑗
𝐻21

𝑗=1 [
𝑒𝑥𝑝(∑ 𝑤𝑗𝑖

𝐼 𝑥𝑖
9
𝑖=1 +𝑏𝑗

𝐻)−𝑒𝑥𝑝(−∑ 𝑤𝑗𝑖
𝐼 𝑥𝑖

9
𝑖=1 +𝑏𝑗

𝐻)

𝑒𝑥𝑝(∑ 𝑤𝑗𝑖
𝐼 𝑥𝑖

9
𝑖=1 +𝑏𝑗

𝐻)+𝑒𝑥𝑝(−∑ 𝑤𝑗𝑖
𝐼 𝑥𝑖

9
𝑖=1 +𝑏𝑗

𝐻)
] + 𝑏1

𝑂)                             (7) 

 

The instance outputs Zj of the hidden layer (ANN2): 

                                        ⁡𝑍𝑗 = 𝑓𝐻[∑ 𝑤𝑗𝑖
𝐼 𝑥𝑖

7
𝑖=1 + 𝑏𝑗

𝐻] = 𝑒𝑥𝑝(−∑ 𝑤𝑗𝑖
𝐼 𝑥𝑖

7
𝑖=1 + 𝑏𝑗

𝐻)                                            (8)

j=1, 2, 3,… 21. The output [CO]: 

                                          [𝐶𝑂] = 𝑓𝑂[∑ 𝑤1𝑗
𝐻𝑍𝑗

11
𝑗=1 + 𝑏𝑘

𝑂] =
1

1+𝑒𝑥𝑝(−∑ 𝑤1𝑗
𝐻 𝑧𝑗

11
𝑗=1 +𝑏𝑘⁡⁡

𝑂 )
                                       (9) 

The combination of equations 8 and 9 leads to the mathematical formula for concentration of carbonyl taking 

into account all the inputs 𝑥𝑖:    

                                              [CO] =
1

1+exp(−∑ w1j
H11

j=1 exp(−∑ wji
I xi

7
i=1 +bj

H)+bk⁡⁡
O )

                                                      (10)                                                                                     

 

These mathematical formulas for calculating the 

carbonyl index and concentration of carbonyl 

contain just the required degree of complexity, and 

thus can readily be applied in polymeric industry as 

a contribution in the aim of enhancing the 

representativeness of accelerated aging testing 

methodologies and predicting the lifetime of 

polymers (PVC, PP, PS, PE, LDPE and EPDM) 

parts. 
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III.2. Comparison between ANN models 

The two ANN models ANN1 and ANN2 were 

compared in terms of the mean absolute error 

(MAE) and the RMSE. MAE is distinct as follows 

[50-52]: 

𝑀𝐴𝐸 =
1

𝑛
∑ |(𝑌𝑖,𝑒𝑥𝑝 − 𝑌𝑖,𝑐𝑎𝑙)|
𝑛
𝑖=1                          (11)                                                                                                                

Table 4 shows a comparison between the NNs 

models. The performance of each model was 

evaluated in terms of the MAE and the RMSE. This 

clearly demonstrates that the ANN2 model 

developed in this work gave lower errors than 

ANN1 model. The results of the comparison are 

explained by the fact that ANN2 model takes into 

consideration the difference between additives and 

polymers, unlike the ANN1 model that does not 

differentiate between the two. Therefore, the ANN2 

provides more accuracy than ANN1 model in 

estimating the carbonyl index and concentration of 

carbonyl in polymer materials.  

 

Table 4. Comparison between ANN1 and ANN2 models 

 

 ANN1 

 

ANN2 

   

MAE  

min 4.8143e-06 8.8636e-05 

Mean 0.0623 0.0177 

Max 0.7066 0.2056 

 

RMSE  

min 4.8143e-06 8.8636e-05 

Mean 0.0958 0.0291 

Max 0.7066   0.2056 

 

III.3. Sensitivity analysis 

The contribution of the input variables on the 

outputs (carbonyl index and concentration of 

carbonyl) was determined by a sensitivity analysis 

using the "Weight" method for both neural network 

models (ANN1 and ANN2). This method, proposed 

initially by [53] and repeated by [54], provides a 

quantification of the relative importance (RI) of the 

inputs on the output of neural network [55]. It is 

based on the partitioning of connection weights 

between [16]: (1) the input-hidden layer, (2) the 

hidden-output layer. The contributions of the input 

variables obtained by the "weight" method for each 

ANN are listed in Figure 3 where it can be seen that 

all selected inputs influence the carbonyl index and 

concentration of carbonyl. The most influential 

inputs are: ρp=18.19% for ANN1 and X3=21.06% 

for ANN2. 
 

 

Figure 3. Relative importance (RI) of input variables histograms: carbonyl index and concentration of carbonyl 
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IV. Conclusion 

In summary, artificial neural networks technique 

with a feed-forward back propagation algorithm 

was used to predict the carbonyl groups during 

photo-thermal and thermal aging of polymers. The 

purpose of the current study was the development 

of two feed-forward neural network models capable 

of predicting the carbonyl index and concentration 

of carbonyl in polymer materials. The ANN models 

developed in this work presented good 

performances (R=0.9471 for ANN1 and R=0.9830 

for ANN2) with lower errors (RMSE equal to 

0.0958 and 0.0291 for ANN1 and ANN2, 

respectively). The sensitivity analysis identified that 

all input variables have a major influence over the 

carbonyl index and concentration of carbonyl in 

polymers during photo-thermal and thermal aging. 

The most influential inputs are: ρp=18.19% for CI 

and X3=21.06% for [CO]. The results of this work 

demonstrated that the ANN have a strong modeling 

capability and are able of solving problems in 

which the correlation between the inputs and the 

output is, not only nonlinear, but also much more 

complex. Last of all, ANN technique are confirmed 

to be a useful mathematical tool with a high 

potential for the prediction of the carbonyl index 

during the photo-thermal aging of polymers and the 

concentration of carbonyl during the thermal aging 

of polymers. 
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