Etude de l’adsorption des composés phénoliques sur des membranes polymères à base de poly (vinyl alcool) /β-cyclodextrine

D. Ghemati, D. Aliouche

Abstract


Abstract : The main objective of this work is the adsorption study of aromatic pollutants: 2-chlorophenol, 2-nitrophenol on membranes based on polyvinyl alcohol polymers modified with cyclodextrin. The polyvinyl alcohol-based membranes crosslinked with glutaraldehyde (PVA / GA) were prepared, then the incorporation of β-cyclodextrin in these membranes ((PVA / GA / β-CD) to different compositions (2, 4, 6, 8% β-CD) was realized. The synthesis was confirmed by infrared spectroscopic analysis (FTIR) and the behavior of the swelling of the membranes was studied by measuring the water retention. The equilibrium adsorption experiments of phenolic compounds: 2-chlorophenol, 2-nitrophenol, phenol, were carried out in aqueous solutions with an equilibrium time of 24 hours.The adsorption results of pollutants at different pH indicate that adsorption increases with increasing levels of β-CD in PVA membranes, and the maximum adsorption capacity is obtained at pH <pKa; The difference in adsorption capacity is due to the difference of the structure, the nature of the substituent and the pKa as well as the polarity Finally, the negative value of the free energy ΔGads indicates a physical adsorption, with possibility of regeneration of material, the adsorption isotherms indicate that the Freundlich model is more appropriate.

Résumé : L’objectif principal de ce travail est l’étude de d’adsorption des polluants aromatiques: 2- chlorophénol, 2-nitrophenol sur des membranes à base des polymères polyvinylalcool modifiées par la cyclodextrine. Pour cela des membranes à base de polyvinylalcool réticule avec le glutaraldehyde (PVA/GA) ont été préparés, puis l’incorporation de la β-Cyclodextrine dans ces membranes ((PVA / GA / β-CD) à différentes compositions (2, 4, 6, 8% β-CD) a été réalisé. La synthèse a été confirmée par analyse spectroscopique infra rouge (FTIR). Et le comportement du gonflement des membranes a été étudié. Enfin, Les expériences d’adsorption des composés phénoliques ont été réalisées dans des solutions aqueuses. Les résultats d’adsorption à différent pH indiquent que le maximum de la capacité d’adsorption est obtenu à pH<pKa ; cela est due à la différence de leur structure, la nature de substituant et le pKa ainsi que la polarité. Enfin, la valeur négative de l’énergie libre ΔGads indique une adsorption physique, avec possibilité de régénération de matériau, les isothermes d’adsorption indiquent que le model de Freundlich est plus approprie.

Full Text:

PDF

References


Lu,MC. Oxidation of chlorophenols with hydrogen peroxyde in the presence of goethite. Chemosphere 40 (2000) 125-130.

Ilknur, S.; Hanife, B. Equilibrium and kinetic studies on the biosorption of 2-chlorophenol and 4-chlorophenol by Live Aspergillusniger,B. Ekological engineering 22 (2013) 88-95.

Kumar,N.S.; Min,K.Phenolic compounds biosorption onto Schizophyllum commune fungus: FTIR analysis, kinetics and adsorption isotherms modeling. Chemical Engineering Journal 168 (2011).

Allabash, R.;Arkas,I.;Hormann,M G. Removal of some organic pollutants in water employing ceramic membranes impregnated with cross-linked silylated dendritic and cyclodextrin polymers. Water Research 41 (2007) 2-7.

Otta,K..;Fenyvesy,E.;Zsadon,B.;Szejtli,J.;Tudos,F. Proceeding First International Symposium On Cyclodextrins. Budapest (1981) 357-362.

Shao,Y.; B,Martel.;Morcellet,M..;Weltrowski, M.; Crini, G. Sorption of textile dyes on beta-cyclodextrin-epichlorhydrin gels. Journal of. Inclusion Phenomena And Molecular Recognition in Chemistry 25 (1996) 209-212.

Janus, L.;Crini, G.;El-Rezzi, V.; Morcellet, M.;Cambiaghi, A. New sorbents containing betacyclodextrin. Synthesis, characterization and sorption properties. Reactive and. Functional. Polymers 42 (1999) 173-180.

Szente,L.; Fenyvesi,E.;Szejtli,J. Entrapment of iodine with cyclodextrins: potential application of cyclodextrins in nuclear waste management. Environmental Science and Technology 33 (1999) 4495-4498.

Bender, M.; Komiyama,M.Cyclodextrin chemistry, Ed. Springer, New York (1978).

Constantin, M.; Fundueanu, G.;Bortolotti, F.;Cortesi, R.;Ascenzi,P. Preparation and characterisation of poly (vinyl alcohol)/ Cyclodextrin microspheres as matrix for inclusion and separation of drugs. International Journal of Pharmaceutics 285 (2004) 87-96.

Muller-Shulte,D.;Brunner, H. Novel magnetic microspheres on the basis of poly (vinyl alcohol) as affinity medium for quantitative detection of glycated haemoglobin. Journal of Chromatoraphyr A711 (1995) 53-60.

Preininger,C.;Chiarelli,P. Immobilization of oligonucleotides on cross- linked poly (vinyl alcohol) for applications in DNA chips. Talanta 55 (2001) 973-980.

Fubing,P.;Jiang,Z.;Changlai,Hu.;Wang,Y.;Lianyu,Lu. Pervaporation of benzene/cyclohexane mixtures through poly (vinyl alcohol) membranes with and without β- cyclodxtrine. Desalination.193 (2006) 182-192.

Jongok, W.; JiYoung, Y.; Moon-Sung, K..; Yong Soo, K. Ionic cluster mimic membranes using ionized Cyclodextrin. Macromolecular Research 14 (2006) 449-455.

Kang, C.; Wang, Y.; Li,R.. A modified spectrophotometric method for the determination of trace amounts of phenol in water .Microchemical. Journal 64 (2000) 2-10.

Connors,K.A. The stability of cyclodextrin complexes in solution. Chemical Reviews 97 (1997).

Wang, L.; Zhang,,J.; Zhao, R. Adsorption of pd(ll) on activated carbon prepared from polygonum orientalelinn: Kinetics isotherms, pH and ionic strength studies. Bioresource. Technology 101 (2010) 15-22.

Schneiderman, E.;Stalcup, A.M. Cyclodextrins: a versatile tool in separation science. Journal of. Chromatographia. B745 (2000).

Subha, R.;Namasivayam, C. Application of nano porous carbon for the uptake of phenol and 2-chlorophenol as bisolute from water “international conference on systems, science. Control, communication engineering and technology (2015)187-190.

Huang, H-H.; Lu, M-C.; Chen, J.-N. Catalytic decomposition of hydrogen peroxide and 2-chlorophenol with iron oxides. Water Research 35 (2001)2291-2298.

Aksu, Z.;Kabasakal, E. Batch adsorption of 2,4-dichlorophenoxy acetic acid (2,4- D) from aqueous solution by granular activated carbon. Separation and Purification Technoogyl 35, (2003).

Kumar, N.S.;Venkata Subbaiah, M..;SubbaReddy, A.;Krishnaia,,A. Biosorption of phenolic compounds from aqueous solutions onto chitosan-abrusprecatorius blended beads. Journal Chemical. Technology Biotechnology 84 (2009).

Ekpete, O. A.; Spiff, A. I.;Horsfoll, M. Adsorption of phenol and chlorophenol in aqueous solution on a commercial activated in batch sorption systems. Innovation in Science and Engineering 2 (2012) 72-78.


Refbacks

  • There are currently no refbacks.