Reduction and bioaccumulation of hexavalent chromium by bacillus megaterium from a tannery’s activated sludge

H. Ouled-Haddar, R. Taleb, M. Adjeroud, M. Moussaoui, M. Sifour

Abstract


Abstract:Hexavalent Cr(VI) is used in leather industry and when left untreated, it exhibits its known carcinogenic and mutagenic effect toward many organisms including humans. Several bacteria possess the capability to reduce Cr(VI) to a less dangerous form: the trivalent Cr(III), others are able to accumulate it or to adsorb it, so microbial bioremediation gives immense opportunities for the development of technologies to detoxify Cr(VI)-contaminated soils or water as an alternative to the existing physicochemical technologies.

This work deals with the evaluation of the ability of Bacillus megateriumA3-1,isolated from local tannery activated sludge, to resist high concentrations of Cr(VI), by determining the MIC, on the one hand, and secondly byinvestigating the involved Cr(VI) removal mechanisms, namely enzymatic reduction and bioaccumulation.Our results indicated that, B.megaterium A3-1 exhibited an MIC for Cr(VI) of 80 mg/L, and could reduce chromate to 100 % when present at a concentration of 30 mg/L after 72 h at 37 °C, furthermore, the rate of Cr(VI) accumulation was 27.50 mg/g biomass dry weight at the same initial concentration.


Full Text:

PDF

References


Cheung, K. H.; Gu, J. D. Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: A review. International Biodeterioration & Biodegradation59(2007) 8–15.

Barceloux, D. G. "Chromium", Clinical Toxicology37 (2) (1999) 173–194.

Langrrd, S. One hundred years of chromium and cancer: a review of epidemiological evidence and selected case reports. American Journal of Industrial Medicine17 (1990). 189–214.

James, B. R. Chemical transformations of chromium in soils relevance to mobility, bioavailability and remediation, The Chromium File 8 (2002).

Jain, M.; Garg, V. K.; Kadirvelu, K. Adsorption of hexavalent chromium from aqueous medium onto carbonaceous adsorbents prepared from waste biomass. Journal of Environmental Management91 (4) (2010) 949–957.

Polti, M. A.; Amoroso, M. J.; Abate, C. M. Chromium (VI) resistance and removal by actinomycete strains isolated from sediments. Chemosphere67 (4) (2007) 660–667.

Olguín, E. J.; Sánchez-Galván, G. Heavy metal removal in phytofiltration and phycoremediation: the need to differentiate between bioadsorption and bioaccumulation. New Biotechnology 30(2012) 3-8.

Poljsak, B.; Pócsi, I.; Raspor, P.; Pesti, M. Interference of chromium with biological systems in yeasts and fungi: a review. Journal of Basic Microbiology 50(1) (2010) 21-36.

Alvarez, A. H.; Sanchez, R. M.; Cervantes, C. Chromate efflux by means of the ChrA chromate resistance protein from Pseudomonas aeruginosa. Journal of Bacteriology181(23) (1999) 7398–7400.

Ozturk, S.;Kaya, T.; Aslim, B.; Tan, S. Removal and reduction of chromium by Pseudomonas spp and their correlation to rhamnolipid production. Journal of Hazardous Materials 231-232(2012) 64– 69.

Thatoi, H.;Das, S.; Mishra, J.; Rath, B. P.; Das, N. Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: A review. Journal of Environmental Management146 (2014) 383-399.

Sukumar, C.; Janaki, V.; Kamala-Kannan,S.; Shanthi, K. Biosorption of chromium (VI) using Bacillus subtilis SS-1 isolated from soil samples of electroplating industry. Clean Technology and Environmental Policy16 (2) (2013) 405-413.

Hassen, A.; Saidi, N.; Cherif, M.; Boudabous, A. Resistance of environmental bacteria to heavy metals. Bioresource Technology 64(1998) 7-15.

Shakoori, A. R.; Makhdoom, M.; Haq, R. U. Hexavalent chromium reduction by a dichromate resistant gram-positive bacterium isolated from effluents of tanneries. Applied Microbiology and Biotechnology 53 (3) (2000) 348–351.

Bhattacharya, A.; Gupta, A. Evaluation of Acinetobacter sp B9 for Cr (VI) resistance and detoxification with potential application in bioremediation of heavy-metals-rich industrial wastewater. Environmental Science and Pollution Research20 (9) (2013) 6628–6637.

Ncibi, M.; Mahjoub, B.;Seffen, M. Study of the biosorption of chromium (VI) by a Mediterranean biomass: Posidoniaoceanica (L) delile. Étude de la biosorption du chrome (VI) par une biomasse méditerranéenne: Posidoniaoceanica (L) delile. Revue des Sciences de l'Eau21(4) (2008) 441-449. (Paper in French)

Muthuraman, M. S. ; Priya, K. S. ; Roja1, K. ; Priya, S. A. ; Sivasubramanian, A. Detoxification and bioremediation of chromium (VI) from the tannery effluents.African Journal of Biotechnology 13 (2) (2013) 111-152.

Srinath, T.; Khare, S.;Ramteke, P. W. Isolation of hexavalent chromium-reducing Cr-tolerant facultative anaerobes from tannery effluent. The Journal of General and Applied Microbiology47 (6) (2001) 307–312.

Camargo, F. A. O.; Okeke, B. C.; Bento, F. M.; Frankenberger, W. T. In vitro reduction of hexavalent chromium by a cell-free extract of Bacillus sp ES 29 stimulated by Cu2+. Applied Microbiology and Biotechnology62 (5-6) (2003) 569–573.

Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry72 (1-2) (1976) 248–254.

Farag, S.; Zaki, S. Identification of bacterial strains from tannery effluent and reduction of hexavalent chromium. Journal of Environmental Biology 31 (5) (2010) 877-882.

Viti, C.; Pace, A.; Giovannetti, L. Characterization of Cr (VI) resistant bacteria isolated from chromium contaminated soil by tannery activity. Current Microbiology46 (1) (2003) 1–5.

Zahoor, A.; Rehman, A. Isolation of Cr (VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater. Journal of Environmental Sciences 21 (6) (2009) 814–820.

Thacker, U.; Parikh, R.; Shouche, Y.; Madamwar, D. Reduction of chromate by cell-free extract of Brucella sp isolated from Cr (VI) contaminated sites. Bioresource Technology 98 (8) (2007) 1541-1547.

Singh, N.; Verma, T.; Gaur, R. Detoxification of hexavalent chromium by an indigenous facultative anaerobic Bacillus cereus strain isolated from tannery effluent. African Journal of Biotechnology12 (10) (2013) 1091-1103.

Xu, W. H.; Jian, H.; Liu, Y. G.; Zeng, G. M.; Li, X.; Zhang, W. Bioreduction of chromate by an isolated Bacillus anthracis Cr-4 with soluble Cr (III) product. Water, Air and Soil Pollution226 (3) (2015) 1-9.

Soni, S. K.; Singh, R.; Awasthi, A.; Singh, M.;Kalra, A. In vitro Cr (VI) reduction by cell-free extracts of chromate-reducing bacteria isolated from tannery effluent irrigated soil. Environmental Science Pollution Research20 (3) (2013) 1661–1674.

Xu, W. H.; Liu, Y. G.; Zeng, G. M.; Li, X., Song; H. X.; Peng, Q. Q. Characterization of Cr (VI) resistance and reduction by Pseudomonas aeruginosa. Transactions of Nonferrous Metals Society of China19 (5) (2009) 1336–1341.

Liu, Y. G.; Xu, W. H.; Zeng, G. M.; Li, X.; Gao, H. Cr (VI) reduction by Bacillus sp. isolated from chromium landfill. Process Biochemistry41(9) (2006) 1981-1986.

Ganguli, A.; Tripathi, A. K. Survival and chromate reducing ability of Pseudomonas aeruginosa in industrial effluents. Applied Microbiology 28 (1999) 76–80.

Cervantes, C.; Campos-Garcia, J.; Devars, S.; Gutiérrez-Corona, F.; Loza-Tavera, H.; Torres-Guzman, J., Moreno-Sanchez, R. Interactions of chromium with micro-organisms and plants.FEMS Microbiology Review 25 (3) (2001) 335-347.


Refbacks

  • There are currently no refbacks.