Etude potentielle de mélange des adsorbants naturels (grignons d’olive et noyaux de dattes) pour l’adsorption du chrome
Abstract
Résumé: Cette étude a pour objectif d’étudier le potentiel d’utilisation de matériaux naturels (mélange homogène de noyaux de dattes et de grignons d’olives) issus de l’activité d’agriculture pour le traitement des eaux usées, chargées en polluant métallique: le chrome. Ces deux matériaux ont été activés chimiquement par l’acide phosphorique, en les mélangeant à différents pourcentages, afin d’obtenir une solution solide homogène et d’améliorer leur capacité adsorptive.
L’adsorption des ions du chrome est étudiée en milieu dispersé (batch) à la fois sur les matériaux pur et à l’état du mélange à différentes proportions, composées d’une quantité fixe en noyaux de dattes (ND), et des quantités du grignon d’olive (GO) variées.
Les résultats d’adsorption du chrome montrent: qu’elle est maximale à un pH =5.6, croit avec la température et avec la concentration initiale du chrome dans la solution. Le modèle de Langmuir stimule mieux les isothermes d’adsorption du chrome que d’autres modèles étudiés (avec un coefficient de corrélation de 0.9988 pour (88% NDI, 12% GOI). L’adsorption du chrome augmente avec l’augmentation du taux du grignon d’olive dans le mélange d’adsorbant (grignon d’olive et noyau de date).
Abstract: This study aims to investigate the potential use of natural materials (homogeneous mixture of date pits and olive stone) from agricultural activity for the treatment of wastewater, loaded with metal pollutant: chromium. These two materials were chemically activated with phosphoric acid, by mixing with various percentages to obtain a homogeneous solid solution and improving their adsorptive capacity. The adsorption of chromium ions is studied in a dispersed medium (batch) both on the pure materials and the state of the mixture in different proportions, composed of a fixed amount in date pits (ND), and the quantities of olive stone (GO) varied.
The chromium adsorption results show: it is maximum at pH = 5.6, increases with temperature and with the initial chromium concentration in the solution. The Langmuir model better stimulates the adsorption isotherms of chromium other models studied (with a correlation coefficient of 0.9988 for (NDI 88%, 12% GOI). The adsorption of chromium increases with increasing rate of olive olive in the adsorbent mixture (olive stone and date pits).
Full Text:
PDFReferences
Ata. S, Din. M.I, rasool. A, Qasim. I, and Mohsin. I, Equilibrium thermodynamics, and kinetic sorption studies for the removal of Coomassie Brilliant Blue on wheat bran as a lowcost adsorbent. J. of Analytical methods in Chemistry V (2012) 8.
Veglio F. And Beolchini of metals by biosorption, a review, hydromettalurgy, 44, 301-316 (1997).
Al –ashes. S and Duvnjak. Z, Biosorption. A review, hydrometallurgy, water Qual. Res. J. Can, 31, 319-328 (1996).
Villaescussa. I, Fiol and poch. J, chromium uptake gage wastes, Chemical Speciation and biodiavalability, 16, 25-33 (2004)
Kumar. K; Sivanesan. V and Ramamurthy. S, V. Adsorption of malachite green onto Pithophora sp., fresh water algae: equilibrium and kinetic modeling. Process Biochemistry, July 2005, vol. 40, no. 8, p. 28652872.
Elsherbiny. A.S, Adsorption kinetics and mechanism of acid dye onto montmorillonite from aqueous solutions: Stopped-flow measurements, Appl. Clay Sci. 83 (2013) 56-62.ApJ, 686, 667.
Jerald. M, Antony. J and. Xavier. N, Equilibrium isotherm studies of MB from aqueous solution unto activated carbon prepared from strychnos potatorium seed International journal of applied biology and pharmaceutical technology V3(3) (2012) 27-31.
Hardryari. Z et al; Experimental study of methylene bleu adsorption from aqueous solution onto carbon nano tube 9. I.J. of Wat. Res. and Environ. Engineering V 2 (2) (2010)16-28.
Chakir. A; Bessiere. J; Kacemi. El. Marouf. B. (2002)- A comparative study of the removal of trivalent chromium from aqueous solutions by bentonite and expanded perlite. Journal of Hazardous Materials, 95, 29-46.
Zoulalian. A. « Transfert de matières et de chaleur au sein des adsorbants ». Technique de l’ingénieur N° (J 1302-1).
Langmuir, I., 1916. The constitution and fundamental propreties of solids and liquids. Am.J. Chem.Soc., 38: 2221-2295.
Bontoux, J. ; "Introduction à l’étude des eaux douces, eaux naturelles, eaux usées, eaux de boissons qualité et santé" ; 2ème édition entièrement revue et complétée ; Edition CEBE DOC, Apr, liège, 63 p, 1993.
Chakir. A; Bessiere. J. El Kacemi. K, Marouf. B. (2002)- A comparative study of the removal of trivalent chromium from aqueous solutions by bentonite and expanded perlite. Journal of Hazardous Materials, 95, 29-46.
Dejardin. R, 1997. « le traitement des eaux », 2éme édition. Revue et améliorée, Ecole Polytechnique de Montréal.
Luo. C; Shen Z.,Li X, 2005. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTAand EDDS, Chemosphere 59.
Temkin. M.J, Pyzhev. V. 1940. Recent modifications to Langmuir isotherms. Acta physiochim USSR., 12: 217-225.
Achraf. C, Jacques. B, Kacemi Kacem. EL and Bouchaib. M. A, “Comparative study of the removal of trivalent chromium from aqueous solutions by bentonite and expanded perlite”, J. Hazardous Mater, vol. 95 (1–2), vol. 29–46, Nov. 11, 2002.
Hameed. B.H, 2009. Removal of cationic dye from aqueous solution using jackfruit peel as non-conventional low-cost adsorbent. Journal of Hazardous Materials. 162, 344–350.
Kumar, K.V; Sivanesan. S and Ramamurthy. V. Adsorption of malachite green onto Pithophora sp fresh water algae: equilibrium and kinetic modeling.Process Biochemistry, July 2005, vol. 40, no. 8, p. 2865-2872.
Alloway. B.J. (1995). Haevy letals in soils. Second edition. Blackis Academic and Professional, London, 368.
Ho. YS, McKay. G. Kinetic model for lead (II) sorption onto peat. Ads Sci Technol 1998; 16:943–55.
Refbacks
- There are currently no refbacks.