Adsorption of phenol from aqueous solution onto Faujasite zeolites with different Si/Al ratios

N. Chaouati, A. Soualah

Abstract


Abstract: Adsorption of phenolfrom aqueous solution onto zeolites has been investigatedin the region of low concentrations (10 to 100 mg L-1).Materials used are zeolites Y (Faujasite structure) with different Si/Al ratio (5.2, 30 and 60) in order to determine the effect of Al content on organic molecules uptake. Results show that capacity of adsorption increases with Si/Al ratio, indicating that for selective adsorption of phenol from aqueous solution adsorbent must be hydrophobic, which implies low aluminum content in the zeolite structure. Experimental data were fitted by the models of Langmuir, Freundlich and Dubinin-Raduskevich calculated by non-linear regression, in order to determine adsorption parameters, which showed us that on the more silicic zeolite the competition effect of water molecules to occupy the active surface is lower.

Full Text:

PDF

References


Su-Hsia Lin, Journal of Environmental Management 90 (2009) 1336–1349.

C. Muniz-Lopez, J. Duconge, R. Roque-Malherbe, Journal of Colloid and Interface Science 329 (2009) 11– 16.

A. Kuleyin, Journal of Hazardous Materials 144 (2007) 307–315.

M. Sprynskyy, T. Ligora, M. Lebedynets, B. Buszewski, Journal of Hazardous Materials 169 (2009) 847–854.

S. R. Taffarel, J. Rubio, Minerals Engineering 23 (2010) 771–779.

B. Armagan , M. Turan, M. S. Ҫelik, Desalination 170 (2004) 33-39.

S. Yapar and M. Yilmaz, Adsorption 10 (2004) 287–298.

Y. Dong, D. Wu, X. Chen, Y. Lin, Journal of Colloid and Interface Science 348 (2010) 585–590.

W. Chunfeng, L. Jiansheng, W. Lianjun, S. Xiuyun, and H. Jiajia, Chinese Journal of Chemical Engineering 17(3) (2009) 513-521.

W. T. Tsai, K. J. Hsienb, H. C. Hsu, Journal of Hazardous Materials 166 (2009) 635–641.

C. K. Lee, S. S. Liu, L. C. Juang, C. C. Wang, K. S. Lin, M. D. Lyu, Journal of Hazardous Materials 147 (2007) 997–1005.

P. A. Mangrulkar, S. P. Kamble, J. Meshram, S. S. Rayalu, Journal of Hazardous Materials 160 (2008) 414–421.

M. Ghiaci, A. Abbaspur, R. Kia, F. Seyedeyn-Azad, Separation and Purification Technology 40 (2004) 217–229.

A. Metes, D. Kovacevic, D. Vujevic, S. Papic, Water Research 38 (2004) 3373–3381.

B. Okolo, C. Park, M. A. Keane, Journal of Colloid and Interface Science 226 (2000) 308–317.

N. Roostaei, F. H. Tezel, Journal of Environmental Management 70 (2004) 157–164.

B. Koubaissy, G. Joly, and P. Magnoux, Ind. Eng. Chem. Res. 47 (2008)9558–9565.

M. Khalid, G. Joly, A. Renaud, and P. Magnoux, Ind. Eng. Chem. Res. 43 (2004) 5275-5280.

I. Braschi, S. Blasioli, L. Gigli, C. E. Gessa, A. Alberti, A. Martucci, Journal of Hazardous Materials 178 (2010) 218–225.

A. Martucci, L. Pasti, N. Marchetti, A. Cavazzini, F. Dondi, A. Alberti, Microporous and Mesoporous Materials 148 (2012) 174–183.

G. Limousin, J.-P. Gaudet, L. Charlet, S. Szenknect, V. Barthès , Applied Geochemistry 22 (2007) 249–275.

D. D. Do, Adsorption analysis: equilibria and kinetics vol 2, Imperial College Press, 1998.

V. J. Inglezakis, Microporous and Mesoporous Materials 103 (2007) 72–81.

S. Vasiliu, I. Bunia, S. Racovita, V. Neagu, Carbohydrate Polymers 85 (2011) 376–387.


Refbacks

  • There are currently no refbacks.