Numerical modelling of the passage from free surface to pressurized flow in a closed pipe

W. Mokrane, A. Kettab

Abstract


Abstract: Urban hydraulic pipelines may be subject to considerable damages while a sudden flow event occurs. However, a transition between free surface and pressurized flow arises; both overpressures and depressions will appear.  Controlling this phenomenon becomes a necessity and must be integrated in pipe dimensioning. Most of earlier works were focused on the fictitious piezometric slot. In this work, we aimed to simulate this flow passage as a shock wave and using the Saint Venant mathematical model. Although, in order to take into account the pressurized state; we modified the pressure term.  The transition from a type of flow to the other is composed of two discontinues states. Therefore, we solve it as a Riemann problem. To arrive to the most appropriate numerical scheme for the solution, we compare between the results of the Lax Fridricks, lax Wendroff and Godunov schemes. We do this considering the process time, the standard deviation and the Courant Friediricks Levy stability condition. On another hand, we carried out experimental tests, on a transparent and closed circular pipe, to measure pressure change with the flow rate. Hence, we give the physical stationary solution. Finally, we compare numerical results to experimental ones and deduce that the Godunov scheme is the most recommended tool to simulate the flow discontinuity between free surface and pressurized flow

Full Text:

PDF

References


Cunge, J.A.; Wegner, M. Intégration numérique des équation de Barré Saint venant par un schéma implicite de différences finies. Houille blanche 1 (1964) 33-39.

Trieu Dong, N. Sur une methode numérique de calcul des écoulements nonpermanents soit à surface libre ,soit en charge ,soit partiellement à surface libre et partiellement en charge. Houille Blanche 2 (1990) 149-158.

Trajkovic, B.; Ivetic, M.; Calomino D’Ippolito, A. Investigation of transition from free surface to pressurized flow in a circular pipe. Water Science Technology 39 (1999) 105-112.

Fuamba, M. Contribution on transient flow modelling in storm sewers. Journal of hydraulic research 40 (2002) 685-693.

Vasconcelos, J.; Wright, S. Surges associated with air explusion in near-horizontal pipelines. Proceedings of FEDSM’03,4thASME_JSME joint fluids engineering conference Honolulu Hawaii USA (2003)

Bourdarias, C.; Gerbi, S. A finite volume scheme for a model coupling free surface and pressurised flows in pipes. Journal of computational and applied Mathematics 209 (2007) 109-131.

Kerger, F.; Archambeau, P.; Erpicum, S.; Dewals, B.J.; Pirotto, M. An exact Riemann solver and a Godunov scheme for simulating highly transient. Journal of Computational and Applied Mathematics 235 (2011) 2030-2040.

Vasconcelos, J.; Wrignt, S.; Roe, P. Improved simulation of flow regime transition in sewers pressure approach. Journal of hydraulic engineering 13 (2006) 555-562.

Herbin, R. Analyse mathématique des equations aux dérivées partielles. Master de mathématiques. Université de mathématiques Université Aix Marseille 1 (2011)

Buyer, M. ; Vazquez, J. ; Bremond, B. Modélisation du comportement hydraulique des déversoirs d’orage lateraux en régime transcritique. Revue des sciences de l’eau 18 (2005) ,25-45.

Ionut, D.; Joly, P.; Kaber, M.; Postel, M. An introduction to scientific computing. Springer edition New York, USA (2007)

Chunli, W.; Samuel, L.S. Hydraulic jump and resultant flow choking in a circular sewer pipe of steep slope. Water 10 (2018) 2-18.


Refbacks

  • There are currently no refbacks.