NiO thin films for environmental photocatalytic applications: a review

D. Blizak, S. Remli, S. Blizak, O. Bouchenak, K. Yahiaoui

Abstract


Abstract: Nickel oxide (NiO) thin film is metal oxide that has attracted much attention in recent years due to its environment friendliness. Like all metallic oxides semiconductors, thin films, NiO is gaining more and more attention as a promising photo-catalyst to replace powder catalysts, which are difficult in recycling. This paper summarized the photocatalytic activity of metallic oxides thin films. Furthermore, the results of several studies on the efficient photo-catalyst of NiO thin films and its components have also been shown. This review will be useful to researcher’s investigate non-toxic materials, with low production cost and high efficiency in the field of environmental protection.

Full Text:

PDF

References


Zhao, J.: Tian, Y.; Liu, A.; Song, L.; Zhao, Z. The NiO electrode materials in electrochemical capacitor: A review. Materials Science in Semiconductor Processing. 96(2019) 78–90.

Jitta, RR.; Gundeboina, R.; Veldurthi, NK.; Guje, R.; Muga, V. Defect pyrochlore oxides: As photocatalyst materials for environmental and energy applications. A review. Journal of Chemical Technology and Biotechnology. 90 (2015) 1937–1948.

Ge, M.; Cao, C. ; Huang, J. ; Li, S. ; Chen, Z. ; Zhang, KQ. ; et al. A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. Journal of Materials Chemistry. 4 (2016) 6772–6801.

Sastre, F.; Corma, A.; García, H. Visible-light photocatalytic conversion of carbon monoxide to methane by nickel(II) oxide. Angewandte Chemie. 52 (2013) 12983–12987.

Zhong, L.; Haghighat, F. Photocatalytic air cleaners and materials technologies - Abilities and limitations. Building and Environment. 91 (2015) 191–203.

Taşköprü, T.; Turan, E.; Zor ,M. Characterization of NiO films deposited by homemade spin coater. International Journal of Hydrogen Energy. 41 ;(2016) 6965–6971.

Kanakkillam, SS.; Krishnan, B. Avellaneda, DA.; Shaji, S. Surfactant free stable cobalt oxide nanocolloid in water by pulsed laser fragmentation and its thin films for visible light photocatalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 594 (2020) 124-657.

Guru, SS.; Govardhanan, B.; Aabel, P.; Ashok, M., Kumar, MCS. Effect of oxygen partial pressure on the tuning of copper oxide thin fi lms by reactive sputtering for solar light driven photocatalysis. Solar Energy. 187(2019) 368–378.

Li X.; Xie J.; Jiang, C.; Yu, J.; Zhang ,P. Review on design and evaluation of environmental photocatalysts. Frontiers of Environmental Science and Engineering. (2018) 1–32

Fujishima, A.; Zhang, X. Titanium dioxide photocatalysis: present situation and future approaches. Comptes Rendus Chimie. 9(2006) 750- 760.

Fujishima, A.; Rao, TN.; Tryk, DA. Titanium dioxide photocatalysis. Journal of photochemistry and photobiology C: Photochemistry reviews. 1(2000) 1– 21.

Chen, D.; Cheng, Y.; Zhou, N.; Chen, P.; Wang, Y.; Li K.; et al. Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. Journal of Cleaner Production. 268 (2020) 121725.

Bossa, N.; Chaurand, P.; Levard, C.; Borschneck, D.; Miche, H.; Vicente, J.; ... & Rose J. Environmental exposure to TiO2 nanomaterials incorporated in building material. Environmental pollution. 220 (2017) 1160–1170.

Xiaoshan Zhua, X.; Yung Changb, YC. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere. 78 (2010) 209–215.

Houdeau, E. ; Lamas, B. Nanoparticules dansl’alimentation-Interactions avec le microbiote intestinal, impacts sur la fonction barrière de l’intestin et devenir systémique. Innovations Agronomiques, INRA. 73 (2019) 81–90.

Yu, X. ; Marks, T. ; Facchetti, A. Metal oxides for optoelectronic applications. Nature Mater. 15 (2016) 383–396.

Song, D., Li, L., Li, B., Sui, Y., & Shen A. Band gap engineering of N-alloyed Ga2O3 thin films. AIP Advances. 6(2016) 065016.

Paulose, R.; Mohan, R.; Parihar V. Nanostructured nickel oxide and its electrochemical behaviour—A brief review. Nano-Structures & Nano-Objects. 11 (2017) 102–111.

Daoudi, O.; Qachaou, Y.; Raidou, A.; Nouneh, K.; Lharch, M.; Fahoume M. Study of the physical properties of CuO thin films grown by modified

SILAR method for solar cells applications. Superlattices and Microstructures. 127 (2019) 93–99.

Arora, AK.; Jaswal, VS.; Singh, K.; Singh, R. Applications of metal/mixed metal oxides as photocatalyst: A review. Oriental Journal of Chemistry. 32 (2016): 2035–2042.

Tyona, M. D. ; Osuji, R. U.; Asogwa, P. U., Jambure,S. B. ; Ezema FI. Structural modification and band gap tailoring of zinc oxide thin films using copper impurities. Journal of Solid State Electrochemistry. 21 (2017) 2629–2638.

Ogo, Y.; Hiramatsu, H.; Nomura, K.;,Yanagi, H.; Kamiya, T.; Hirano, M.; Hosono H. p-channel thin- film transistor using p-type oxide semiconductor, SnO. Applied Physics Letters. 93 (2008) 032113.

Sreedhar, M.; Reddy, IN.; Venkata, C.; Shim, J. Brijitta J. Materials Science in Semiconductor Processing Highly photostable Zn-doped TiO 2 thin fi lm nanostructures for enhanced dye degradation deposited by sputtering method. Materials Science in Semiconductor Processing. 85 (2018) 113–121.

Dahrul, M.; Alatas, H. Preparation and optical properties study of CuO thin film as applied solar cell on LAPAN-IPB Satellite. Procedia Environmental Sciences. 33 (2016) 661–667.

Anyaegbunam, F. N. C.; Augustine, C. A Study of optical band gap and associated urbach energy tail of chemically deposited metal oxides binary thin films. Digest Journal Of Nanomaterials And Biostructures. 13 (2018) 847–856.

Ijeh, R. O.; Nwanya, A. C.; Nkele, A. C.; Madiba, I. G.; Khumalo, Z.; Bashir, A. K. H.,;... & Ezema FI. Magnetic and optical properties of electrodeposited nanospherical copper doped nickel oxide thin films. Physica E: Low-dimensional Systems and Nanostructures. 113 (2019) 233-239.

Arunodaya, J.; Sahoo, T. Effect of Li doping on conductivity and band gap of nickel oxide thin film deposited by spin coating technique. Materials Research Express. 7 (2019) 016405.

Hendi, A. H. Y.; Al-Kuhaili, M. F.; Durrani, S. M. A.; Faiz, M. M.; Ul-Hamid, A.; Qurashi, A.; Khan, I. Modulation of the band gap of tungsten oxide thin films through mixing with cadmium telluride towards photovoltaic applications. Materials Research Bulletin. 87 ( 2017) 148–154.

Figueiras, F. G.; Fernandes, J. R. A. ; Silva, J. P. B. ; Alikin, D. O. ; Queirós, E. C. ; Bernardo, C. R. ; Tavares, PB. Narrow optical gap ferroelectric Bi 2 ZnTiO 6 thin films deposited by RF sputtering. Journal of Materials Chemistry A. 7 (2019) 10696– 10701.

KHAN, Ziaul Raza, AZIZ, Anver, KHAN, Mohd Shahid et al. Influence of zinc concentration on band gap and sub-band gap absorption on ZnO nanocrystalline thin films sol-gel grown. Materials Science-Poland. 35 (2017) 246–253.

Sun, Y. F.; Liu, S. B.; Meng, F. L.; Liu, J. Y.; Jin, Z.; Kong, L. T.; Liu, JH. Metal oxide nanostructures and their gas sensing properties: a review. Sensors. 12 (2012) 2610–2631.

Chrenko, RN. Op;tical properties of nickel oxide.

Physical Review. 144 (1959) 1507–1513.

Allen GAS.JW. Magnitude and origin of the band gap in NiO. Physical Review Letter. 53(1984) 2339– 2342.

Minami, AF and F. Valence-band photoemission and optical absorption in nickel compounds. Physical Review. 30 (1984) 957–971.

Jlassi, M.; Sta I.; Hajji, M.; Ezzaouia, H. Optical and electrical properties of nickel oxide thin films synthesized by sol-gel spin coating. Materials Science in Semiconductor Processing. 21(2014) 7–13.

Jana, Sumanta, Anup Mondal and AG. Fabrication ; of stable NiO/Fe2O3 heterostructure: a versatile hybrid material for electrochemical sensing of glucose, methanol and enhanced photodecomposition and/photoreduction of water contaminants. Applied Catalysis B: Environmental. 2018; 232: 26–36.

Noua, A. ; Farh, H. ; Guemini, R. ; Zaoui, O. ; Ounis, TD. ; Houadsi, H., et al. Photocatalytic degradation of methylene blue by NiO thin films under solar light irradiation. Journal of Nano Research. 56 (2019) 152– 157.

Wang, Y.; Zhang, F.; Wei, L.; Li, G.; Zhang, W. Facet- dependent photocatalytic performance of NiO oriented thin films prepared by pulsed laser deposition. Physica B: Condensed Matter. 457 (2015) 194–197.

Liu, Z.; Tian, Y.; Zhou, X.; Liu, X;. Huang L. Comparison of two different nickel oxide films for electrochemical reduction of imidacloprid. RSC Advances. 10 (2020) 3040-3047.

Navalón S.; Dhakshinamoorthy A.; Álvaro M; Garci

H. Photocatalytic CO2 reduction using non-itanium metal oxides and sulfides. ChemSusChem. 6 (2013) 562–577.

Periyannan, S.; Manceriu, L.; Duy, N.; Andreas, N. Wolfram K. Influence of ZnO Surface Modification on the Photocatalytic Performance of ZnO / NiO Thin Films. Catalysis Letters. 149 (2019) 1813–1824.

Molaei, R.; Bayati, M. R.; Alipour, H. M.; Nori, S.,; Narayan J. Enhanced photocatalytic efficiency in zirconia buffered n-NiO/p-NiO single crystalline heterostructures by nanosecond laser treatment. Journal of Applied Physics. 113 (2013) 233-708.

Chen C-J ; al. P - N junction mechanism on an improved NiO / TiO2 photocatalyst. Catalysis communications. 12(2008) 1307-1310. ;

Farh, H.; Noua, A.; Guemini, R. Guitoume, D. E.; Zaoui, O. Thickness Effect of ZnO Film on the Performance of Photocatalytic in a p-NiO/n-ZnO Heterostructure Under Solar Light Irradiation. Journal of Nano Research. 62 (2020) 87–95.

Luo, C.; Li, D.; Wu, W.; Yu, C.; Li, W.; Pan C. Preparation of 3D reticulated ZnO/CNF/NiO heteroarchitecture for high-performance photocatalysis. Applied Catalysis B: Environmental. 166 (2015) 217–223.

Ali, A.M. RN. Structural, optical and photocatalytic properties of NiO–SiO2 nanocomposites prepared by sol–gel technique. Catalysis Today. 208 (2013) 2–6.


Refbacks

  • There are currently no refbacks.