Evaluating City Carbon Carrying Capacity: How many people can Algiers sustain?

M. Hachaichi, J.K. Kazak, T. Baouni

Abstract


Abstract: The current study sets to determine theoretical paths in order to balance Algiers CO2 emissions with city’s carbon sink capacity by i) calculating carbon sink potential (forest land, wetlands, soil and technology) and ii) calculating Algiers’ carbon emissions considering territorial emissions (Scope 1 and 2) within Algiers’ administrative boundaries. The analysis shows that Algiers carbon emissions (estimated to 392 9243 t CO2) exceed the city carbon sink capacity (estimated to 157 4044 t CO2) by 1.5 times. Thus, per capita carbon emissions in Algiers for the year 2016 were estimated to 1.24 tones CO2/y composed by 0.84 tones CO2/y (67.7%) from the combustion of fossil-fuels and 0.39 tones CO2 (31.4%) from the consumption of electricity. This study exhibits that to live within Algiers’ carbon budget, urban policy-makers should endeavour three major paths to accommodate Algiers’carbon deficit: either i) to limit Algiers’s population to 1 268 963 inhabitants –that means 1/3 of Algiers’ current population size-. ii) increase Algiers’s ecological assets area to 36 709 ha. Or iii) introduce and generalize decarbonized energy for residential and transportation sectors which represent the main driving sectors for CO2 emissions as they emit respectively 25% and 51% of Algiers total CO2 emissions. City-level carbon emissions inventory can help to introduce cities with developing economies, such as Algiers, into the global climate issues and suggest solid recommendations for shifting current urban models towards a more sustainable urban planning intricately linked to sustainable forest management.

Full Text:

PDF

References


Erle, E. Nature for the People: Toward A Democratic Vision for the Biosphere, Nature (2017).

Erle, E. Physical geography in the Anthropocene, Progress in Physical Geography: Earth and Environment, (2018) 525: 532.

John, H.; Paul E. Human population and the global environment », Am. Sci (1974) 282: 292.

Simon, L.; Mark, M. Defining the Anthropocene, Nature (2015) 171: 180.

Will, S.; Regina, S.; Peter, T.; Jill, J.; Pamela, M.; Berrien, I.; Frank, O.; Katherine, R.; Hans-Joachim, S.; Billie, T.; Robert, W. Global Change and the Earth System: A Planet Under Pressure, Global Change and the Earth System (2006).

Paolo, T. ; Giulia, S. ; Erle, E. Mapping the Topographic Fingerprints of Humanity Across Earth, Eos (2017).

Ernst, W.; Anders, W. Come On! Capitalism, Short-termism, Population and the Destruction of the Planet; Springer-Verlag (2018).

Louise, M. ; Robin, F. ; Valentina, M. Living Planet Report 2016: Risk and Resilience in a New Era. WWF (2016).

Stephanie, P. Cities in the age of the Anthropocene: Climate change agents and the potential for mitigation, Anthropocene (2017) 74: 82.

Lauren, R.; Amanda, S.; Anna, S. ; Graham, M. Which Way Forward? Past and New Perspectives on Community-Based Conservation in the Anthropocene, ResearhGate (2018).

Jan, Z.; Colin, W.; Mark, W.; Anthony, B.; Alejandro, C.; Paul, C.; Erle, E. ; Michael, E.; Lan, F .;Jaques, G. When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal, Quaternary International (2015) 196: 203.

Felix, C.; Giovanni, B.; Robert, B.; Peter-Paul, P. ; Karen, S. Global typology of urban energy use and potentials for an urbanization mitigation wedge, PNAS (2015) 6283: 6288.

Hay, D.; Pascal, P.; Damien, F. National environmental limits and footprints based on the Planetary Boundaries framework: The case of Switzerland, Global Environmental Change (2018) 49: 57.

Anu, R.; Armistead, R.; Patricia, C.; Karnamadakala, S.; Emani, K. Meta-principles for developing smart, sustainable, and healthy cities, Science (2016) 940: 943.

David, L.; Laurel, H.; Adeline, M.; Alessandro, G.; Mikel, E.; Maria, M.; Jon, M. ; Fatime-Zahra, M. ; Shiyu, H. Ecological Footprint Accounting for Countries: Updates and Results of the National Footprint Accounts, 2012–2018, Resources (2017).

Manfred, M. Economic growth and quality of life: a threshold hypothesis, Ecological Economics (1995) 115: 118.

Valentina, N.; Elisa, T.; Federico, P. ; Cristina, C. Biocapacity vs Ecological Footprint of world regions: A geopolitical interpretation, Ecological Indicators (2012) 23: 30.

Johan, R.; Will, S.; Kevin, N.; Aasa, P., Stuart, C.; Eric, L.; Timothy, L.; Marten, S.; Carl, F.; Hans, S. A safe operating space for humanity, Nature (2009).

Will, S.; Katherine, R.; Johan, R.; Sarah, C.; Ingo, F.; Elena, B.; Reinette, B.; Stephen, C.; Wim, D.; Cynthia, D. Planetary boundaries: Guiding human development on a changing planet, Science (2015).

Garrett, H. The Tragedy of the Commons, Science (1968) 1243: 1248.

Aristide, A.; Crawford, R. H.; Bouillard, P. Overcoming the “black box” approach of urban metabolism, Living and Learning (2015).

United Nations Department of Economic and Social Affairs, The World’s Cities in 2016, United Nnations (2016).

Eero, P.; Olli, S. Evaluating the carbon emissions of the low carbon city: A novel approach for consumer-based allocation, Cities (2013) 233:239.

Ma-Igorzata, Ś.; Szymon, S.; Jan, K.; Joost, V.; Mathis, W.; Armando, A. Application of Ecological Footprint Accounting as a Part of an Integrated Assessment of Environmental Carrying Capacity: A Case Study of the Footprint of Food of a Large City, Resources (2018).

Caroline, A.; Barbara, J. ; Leslie, R. ; Richard, S. ; Andrew, S. Reimagining cities. Introduction, Scienece (2008).

Daniel, H.; Lorraine, S.; Claudia, T. Cities and greenhouse gas emissions: moving forward, Environment and Urbanization (2011) 207:227.

Yuliya, K.; Leonardo, R. ; Joao, P. Urban Economies Resource Productivity and Decoupling: Metabolism Trends of 1996–2011 in Sweden, Stockholm, and Gothenburg, Environ. Sci. Technol (2015) 8815:8823.

Benjamin, S.; Marilyn, B. Twelve metropolitan carbon footprints: A preliminary comparative global assessment, Energy Policy (2010) 4856:4869.

Intergovernmental Panel on Climate Change, Mitigation of climate change, Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC (2014).

Mariarosaria, L; Elisabetta, L.; Caterina, T.; Roberto, R. Assessing the urban carbon footprint: An overview, Environmental Impact Assessment Review (2017) 43:52.

Brad, E.; David.,M.; Steven, G.; Oursler, A. Andres. R, et Mathis. W, The Ecological Footprint Atlas 2010. Global Footprint Network (2010).

Global Footprint Network-Public Data Set, Free Public Data Set - Global Footprint Network, Global Footprint Network Advancing the Science of Sustainability (2019).

Philip, F. The human carrying capacity of the Brazilian rainforest. Columbia University Press (1986).

Herman, D. Toward some operational principles of sustainable development, Ecological economics (1990) 1: 6.

Robert, C.; Herman, D. Natural capital and sustainable development, Conservation biology (1992) 37:46.

Joel, C. How many people can the earth support? Bulletin of the American Academy of Arts and Sciences (1995) 25:39.

Thomas, M. Population: the first essay. University of Michigan Press (1959).

Eugene, O. Fundamentals of ecology. Saunder (1959).

Paul, E. Energy use and biodiversity loss, Philosophical Transactions of the Royal Society of London B: Biological Sciences (1994) 99:104.

Paul, E.; John, H. Impact of population growth, Science (1971).

Aldo, L. Game Management. Univ of Wisconsin Press (1987).

André, D. Carrying capacity: a confusing concept, ACTA OECOL. (OECOL. GEN.) (1988) 337:346.

Nicholas, G. Energy and economic myths, Southern economic journal (1975) 347:381.

Nicholas, G. the entropy law and the economic problem, Valuing the Earth: Economics, ecology, ethics (1993) 75:88.

Nicholas, G. Energy analysis and economic valuation, in Green Accounting, Routledge (2018) 75:110.

Matt, R. Genome: The Autobiography of a Species in 23 Chapters. HarperCollins Publishers (2017).

Fred, M.; Abraham, L.; Ver, L. Global Carbon Cycle, Carbon Dioxide Effects Research and Assessment Program, (1980).

Iintergouvermental Panel on Climte Change, Global warming of 1.5°C. IPCC (2018).

William, L.; Felix, C.; Max, C.; Jan, M. Learning about urban climate solutions from case studies, Nat. Clim. Chang (2019) 279:287.

United Nations, Population growth, United Nations (2019).

Robert, C.; Herman, D. Natural capital and sustainable development, Conservation biology (1992) 37:46.

Office National des Statistiques, ONS, l’Algérie en quelques chiffres, ONS (2016).

Intergovernmental Panel on Climate Change, Mitigation of climate change, 2006 IPCC guidelines for national greenhouse gas inventories. IPCC (2006).

Joel, M.; Andrew, G.; Kate, S.; John, B.; Andrew, S. Uncovering blind spots in urban carbon management: the role of consumption-based carbon accounting in Bristol, UK, Regional Environmental Change, (2017) 1467:1478.

Juudit, O.; Sanna, A.; Jukka, H.; Thomas, W.; Jack, C.; Seppo, J. what can we learn from consumption-based carbon footprints at different spatial scales? Review of policy implications, Environ. Res. Lett. (2019).

Peter-Paul, P.; Timm, Z.; Abel, C.; Tino, K.; Jessica, S.; Helga, W. Reducing Urban Greenhouse Gas Footprints, Scientific Reports (2017).

Samar, K.; Francois, P.; Thomas, H. Reconstruction of the history of anthropogenic CO2 concentrations in the ocean, Nature (2009).

Bert, M.; Ogunlade, D.; Heleen, C.; Manuela, L.; Leo, M. IPCC special report on carbon dioxide capture and storage, Cambridge University Press (2015).

Gretchen, D.; Paul, E. Population, sustainability, and Earth’s carrying capacity, BioScience (1992) 761:771.

Elena, B.; Wolfgang, C.; Alpina, B.; Georgina, C.: Sandra, D.; Benis, E.; Ilse, G.; Cornelia, K.; Sandra, L.; Elena, L.; Louis, L.; Berta, M.; Patriick, M.; Harold, M.; Jeanne, N.; Unai, P.; Karine, P.; Natalia, H.; Garry, P.; Anne, P.; Belinda, R.; Peter, R.; Ralf, S.; Martin, S. ; Petra, T. ; Teja, T.; Turner, B.; Peter,V.; Ernesto, V.; Piran, W.; guy, W. Linking biodiversity, ecosystem services, and human well-being: three challenges for designing research for sustainability, Current opinion in environmental sustainability (2015) 76:85.

Robert, C. Ecosystem services: multiple classification systems are needed, Biol Conservat, (2008) 350:352.

Millennium Ecosystem Assessment, Éd., Ecosystems and human well-being: synthesis. Washington, DC: Island Press (2005).

José, M. ; ocio, R.O. ; Tahar, B. ;Juan, O. Railway transit services in Algiers: priority improvement actions based on users’ perceptions, Transport Policy (2017) 175:185.

Mohamed, B.; Tahar, B.; Thomas, T. La dépendance automobile à Alger : entre efficacité du système automobile et précarité du système de transport, RTS - Recherche Transports Sécurité (2018).

Mohamed, B.; Tahar, B.; Thomas, T. Automobile dependency in Algiers, between efficiency of the automotive system and precariousness of the transport system, RTS - Recherche Transports Sécurité (2018).

Madani, Z. ; Amina, T. la mobilite urbaine dans l’agglomeration d’alger : evolutions et perspectives, Insaniyat (2009).

Rocio, O. ; Jose, M. ; Tahar, B. ; Juan, O. Understanding transit users in Algiers: Key quality factors at the railway services, in XII Congreso de ingeniería del transporte (2016) 483: 490.

Mathis, W.; William, R. Our Ecological Footprint: Reducing Human Impact on the Earth. New Society Publishers (1998).

William, R.; Mathis, W. Urban ecological footprints: why cities cannot be sustainable—and why they are a key to sustainability, in Urban Ecology, Springer, (2008) 537:555.

Sanna, A.; Juudit, O.; Jukka, H. ; Seppo, J. To each their own? The greenhouse gas impacts of intra-household sharing in different urban zones, Journal of Cleaner Production (2016) 356:367.

Abbass, E.; Naser, N.; Mohammed, R.; Saeed, Z. determining the ecological footprint of vehicles in Tehran, Iran, Applied Ecology and Environmental Research, (2016) 439: 450.

John, B.; Craig, S. An ecological footprint of the UK: Providing a tool to measure the sustainability of local authorities, York: Stockholm Environment Institute, University of York (2003).

Mairie de Paris, Paris change d’ère vers la neutralité carbone en 2050, elioth (2016).

Carlo, A.; Ingrif, N. The Ecological Footprint of the City of Oslo; Results and Proposals for the Use of the Ecological Footprint in Local Environmental Policy, Oslo: Program for Research and Documentation for a Sustainable Society (ProSus) Centre for Development and Environment, University of Oslo (2002).

Karman, S. ; Kobra, D. ; Alireza, I. Estimating the Ecological Footprint of Transportation in the City of Isphahan (Iran), Current World Environment (2014).

Maria, M.; Alessandro, G., Valentina, N.; David, L.; Simone, B.; Mathis, W.; Nadia, M. Ecological Footprint: Refining the carbon Footprint calculation, Ecological Indicators (2016) 390:403.

Ministère de l’Energie, Energies Nouvelles, Renouvelables et Maitrise de l’Energie. (2016).


Refbacks

  • There are currently no refbacks.