Assessment of olive mill wastewaters bioconversion potential into biotechnological and health interest microbial biomass
Abstract
Full Text:
PDFReferences
COI (Conseil oléicole international). Huiles d'olive, Production. Newsletter – marché oléicole 121 (2017) 1-5.
Janakat, S.; Al-nabulsi, A.A.R.; Allehdan, S.; Olaimat, A.N.; Alan, H.R. Antimicrobial activity of amurca (olive oil lees) extract against selected foodborne pathogens. Food Science and Technology 35 (2015) 259-265.
Dermeche, S.; Nadour, M.; Larroche, C.; Moulti-Mati, F.; Michaud, P. Olive mill wastes biochemical characterizations and valorization strategies. Process Biochemistry 48 (2013)1532-1552.
Nadour, M.; Laroche, C.; Pierre, G.; Delattre, C.; Mati, F.; Michaud, P. Structural characterization and biological activities of polysaccharides from olive mill wastewater. Applied Biochemistry and Biotechnology 177 (2015) 431-45.
Galanakis, C.M.; Kotsiou, K. Recovery of Bioactive Compounds from Olive Mill Waste. Book chapter in Olive Mill Waste Recent Advances for Sustainable Management (2017) 205-229.
Komnitsas, K.; Modis, K.; Doula, M.; Kavvadias, V.; Sideri, D.; Zaharaki, D. Geostatistical estimation of risk for soil and water in the vicinity of olive mill wastewater disposal sites. Desalination and Water Treatment 57 (2016) 2982-2995.
McNamara, C.J.; Anastasiou C.C.; O’Flaherty, V.; Mitchell, R. Bioremediation of olive mill wastewater. International Journal of Biodeterioration and Biodegradation 61 (2008) 127-134.
Daassi, D.; Lozano-Sanchez, J.; Borras, I.; Lassaad, B.; Woodward, S.; Mechichi, T. Olive oil mill wastewaters: phenolic content characterization during degradation by Coriolopsis gallica. Chemosphere 113 (2013) 62-70.
Rodriguez, M. M.; Pérez, J.; Ramos-Cormenzana, A.; Martinez, J. Effect of extracts obtained from olive oil mill waste on Bacillus megaterium ATCC 33085. Journal of Applied Bacteriology 64 (1988) 219-222.
Capasso, R.; Cristinzio, G.; Evidente, A.; Scognamiglio, F. Isolation, spectroscopy and selective phytotoxic effects of polyphenols from vegetable wastewaters. Phytochemistry 31 (1992) 4125-4128
Marsilio, V.; Campestre C.; Lanza, B. Phenolic compounds change during California-style ripe olive processing. Food Chemistry 74 (2001) 55-60.
Galanakis, C.M.; Tornberg, E.; Gekas, V.A study of the recovery of the dietary fibres from olive mill wastewater and the gelling ability of the soluble fibre fraction. LWT-Food Science and Technology 43 (2010) 1009-1017.
Galanakis, C. M.; Tornberg, E.; Gekas, V. Recovery and preservation of phenols from olive waste in ethanolic extracts. Journal of Chemical Technology and Biotechnology 85 (2010) 1148-1155.
Galanakis, C.M.; Tornberg, E.; Gekas, V. Clarification of high-added value products from olive mill wastewater. Journal of Food Engineering 99 (2010) 190-197.
Galanakis, C.M. Olive fruit and dietary fibers: components, recovery and applications. Trends in Food Science and Technology 22 (2011) 175-184.
Senani-Oularbi, N.; Riba, A.; Moulti-Mati, F. Inhibition of Aspergillus flavus growth and aflatoxin B1 production by olive mill wastewater. Bioscience Research 15 (2018) 369-380.
Soccol, C.R.; de Souza Vandenberghe, L.P.; Spier, M. R.; Pedroni Medeiros, A.B.; Yamaguishi, C.T.; Lindner, J. D. D.; Pandey, A.; Thomaz-Soccol, V. The Potential of Probiotics: A Review. Food Technology and Biotechnology 48 (2010) 413-434.
Fontanille, P.; Kumar, V.; Christophe, G.; Nouaille, R.; Larroche, C. Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica. Bioresource Technology 114 (2012) 443-449.
Ledesma-Amaro, R.; Nicaud, J.M. Metabolic Engineering for Expanding the Substrate Range of Yarrowia lipolytica. Trends in Biotechnology 34 (2016) 798-809.
Gonçalves, F.A.G.; Colen, G.; Takahashi, J.A. Yarrowia lipolytica and Its Multiple Applications in the Biotechnological Industry. Review Article. The Scientific World Journal 2014 (2014) 1-14.
Béligon, V.; Poughon, L.; Christophe, G.; Lebert, A.; Larroche, C.; Fontanille, P. Improvement and modeling of culture parameters to enhance biomass and lipid production by the oleaginous yeast Cryptococcus curvatus grown on acetate. Bioresource Technology 192 (2015) 582-591.
Beligon, V. Valorisation d'acides gras volatils issus de fermentation anaerobie par la production de lipides microbiens, precurseurs de biodiesel. Thèse : Alimentation et Nutrition. Universite Blaise Pascal - Clermont-Ferrand II, (2016) France.
Ratledge, C. Regulation of lipid accumulation in oleaginous micro-organisms. Biochemical Society Transaction 30 (2002) 1047–1050.
Papanikolaou, S.; Aggelis, G. Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresource Technology 82 (2002) 43-49.
Beopoulos, A.; Cescut, J.; Haddouche, R.; Uribelarrea, J. L.; Molina-Jouve, C.; Nicaud, J.M. Yarrowia lipolytica as a model for bio-oil production. Progress in Lipid Research 48 (2009) 375-387.
Beopoulos, A.; Chardot, T.; Nicaud, J.M. Yarrowia lipolytica: A model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie, Lipids for the future from agro-resources to human health. Biochimie 91 (2009) 692-696.
Dourou, M.; Kancelista, A.; Juszczyk, P.; Sarris, D.; Bellou, S.; Triantaphyllidou, I.; Rywinska, A.; Papanikolaou, S.; Agglis, G. Bioconversion of olive millwastewater into high-added value products. Journal of Cleaner Production 139 (2016) 957-969.
Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R. M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteau reagent. Methods in Enzymology 299 (1999) 152-178.
Yousuf, A.; Sannino, F.; Addorisio, V.; Pirozzi, D.J. Microbial conversion of olive oil mill wastewaters into lipids suitable for Biodiesel Production. Journal of Agricultural and Food Chemistry 58 (2010) 8630-8635.
Yin, H.C.; Dong, X.L.L.; Wang, Z.G.; Xu Q.Q.; Liu X.L.; Yan, H. Economic production of probiotics from kitchen waste. Food Science and Biotechnology 22 (2013), 59-63.
Zirehpour, A.; Rahimpour, A.; Jahanshahi, M.; Peyravi, M. Mixed matrix membrane application for olive oil wastewater treatment: process optimization based on Taguchi design method. Journal of Environmental Management 132 (2014) 113-120.
Larif, M.; Ouhssine, M.; Soulaymani, A.E.; Elmidaoui, A. Potential effluent oil mills and antibacterial activity polyphenols against some pathogenic strains. Research on Chemical Intermediates 41 (2013) 1213-1225.
Senani-Oularbi, N.; Moulti-Mati, F.; Letteron, P.; Ducroc, R.; El benna, J.; Marie, J.C. Hypoglycemic effect of olive mill wastewater in mice involves the sglt-1 transporter. International Journal of Pharmacy and Pharmaceutical Sciences 9 (2016) 73-78.
Ramos, P.; Santosc, S.A.O.; Guerra, Â.R.; Guerreiro, O.; Felício, L.; Jerónimo, E.; Silvestre, A.J.D.; Netoc, C.P.; Duarte, M. Valorization of olive mill residues: Antioxidant and breast cancer antiproliferative activities of hydroxytyrosol-rich extracts derived from olive oil by-products. Industrial Crops Products 46 (2013) 359-368.
Giavasis, I.; Tsante, E.; Goutsidis, P.; Papatheodorou, K.; Petrotos, K. Stimulatory effect of novel polyphenol-based supplements from olive mill waste on the growth and acid production of lactic acid bacteria. In Microbes in Applied Research: Current Advances and Challenges (2012) 308-3012.
Tsangalis, D.; Ashton, J. F.; McGill, A.E.J.; Shah, N.P. Enzymic transformation of isoflavone phytoestrogens in soymilk by b-glucosidase-producing Bifidobacteria. Journal of Food Science 67 (2002) 3104-3113.
Aura, A. M. Microbial metabolism of dietary phenolic compounds in the colon. Phytochemistry Reviews 7 (2008) 407-429.
Donkor, O.N.; and Shah, N.P. Production of b-glucosidase and hydrolysis of isoflavone phytoestrogens by Lactobacillus acidophilus, Bifidobacterium lactis, and Lactobacillus casei in soymilk. Journal of Food Science 73 (2008) 15-20.
Uskova, M.A.; Kravchenko, L.V.; Avrenjeva, L.I.; Tutelyan, V.A. Effect of Lactobacillus casei 114001 probiotic on bioactivity of rutin. Bulletin of Experimental Biology and Medicine 149 (2010) 578-582.
Gerasopoulos, K.; Stagos, D.; Petrotos, K.; Kokkas, S.; Kantas, D.; Goulas, P.; Kouretas, D. Feed supplemented with polyphenolic byproduct from olive mill wastewater processing improves the redox status in blood and tissues of piglets. Food and Chemical Toxicology 86 (2015) 319-327.
Kachouri, F.; Ksontini, H.; Kraiem, M.; Setti, K.; Mechmeche, M.; Hamdi, M. Involvement of antioxidant activity of Lactobacillus plantarum on functional properties of olive phenolic compounds. Journal of Food Science and Technology 52 (2016) 7924-7933.
Lopez De Lacey, A.M.; Perez-Santin, E.; Lopez-Caballero, M.E.; Montero, P. Survival and metabolic activity of probiotic bacteria in green tea. LWT- Food Science and Technology 3 (2013) 1-9.
Lara-villoslada, F.; Olivares, M.; Sierra, S.; Rodriguez, J.M.; Boza, J.; Xaus, J. Beneficial effects of probiotic bacteria isolated from breast milk. British Journal of Nutrition 98 (2007) 96-100.
Ayed, L. and Hamdi, M. Fermentative decolorization of olive mill wastewater by Lactobacillus Plantarum. Process Biochemistry 39 (2003) 59-65.
Aouidi, F.; Gannoun, H.; Ben Othman, N.; Ayed, L.; Hamdi, M. Improvement of fermentative decolorization of olive mill wastewater by Lactobacillus paracasei by cheese whey’s addition. Process Biochemistry 44 (2009) 597-601.
Avila, M.; Hidalgo, M.; Sánchez-moreno, C.; Pelaez, C.; Requena, T.; Pascual-Teresa, S.D. Bioconversion of anthocyanin glycosides by Bifidobacteria and Lactobacillus. Food Research International 42 (2009) 1453-1461.
Cueva, C.; Moreno-arribas, M.V.; Martín-Álvarez, P. J.; Bills, G.; Vicente, M.F.; Basilio, A.; López, C.R.; Requena, T.; Rodríguez J.M.; Bartolom, B. Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Research in Microbiology 161 (2010) 372-382.
Boskou, D. Sources of natural phenolic antioxidants. Trends in Food Science and Technology 17 (2006) 505-512.
Obied, H.K.; Bedgood, D.R.J.; Prenzler, P.D.; Robards, K. Bioscreening of Australian olive mill waste extracts: biophenol content, antioxidant, antimicrobial and molluscicidal activities. Food and Chemical Toxicology 45 (2007) 1238-1248.
Yangui, T.; Sayadi, S.; Gargoubi, A.; Dhouib, A. Fungicidal effect of hydroxytyrosol rich preparations from olive mill wastewater against Verticillium dahliae. Crop Protection 29 (2010) 1208-1213.
Carraro, L.; Fasolato, L.; Montemurro, F.; Martino, M. E.; Balzan, S.; Servili, M.; Novelli, E.; Cardazzo, B. Polyphenols from olive mill waste affect biofilm formation and motility in Escherichia coli K-12. Microbial Biotechnology 7 (2014) 265-275.
Abu-Lafi, S.; Al-Natsheh M. S.; Yaghmoor, R.; Al-Rimawi, F. Enrichment of Phenolic Compounds from Olive Mill Wastewater and In Vitro Evaluation of Their Antimicrobial Activities. Evidence-Based Complementary and Alternative medicine 2017 (2017) 1-9.
Lagrouh, F.; Dakka, N.; Bakri, Y. The antifungal activity of Moroccan plants and the mechanism of action of secondary metabolites from plants. Journal de Mycology Medical 27 (2017) 303-311.
Aziz, N.H.; Farag, S.E.; Mousa, L.A.; Abo, M.A. Comparative antibacterial and antifungal effects of some phenolic compounds. Microbios. 93(1998) 43-54.
Tafesh, A.; Najami, N.; Jadoun, J.; Halahlih, F.; Riepl, H.; Azaizeh, H. Synergistic antibacterial effects of polyphenolic compounds from olive mill wastewater. Evidence-Based Complementary Alternative Medicine 2011 (2011) 1-9.
Capasso, R.; Evidente, A.; Schivo, L.; Orru, G.; Marcialis, M.A.; Cristinzio, G. Antibacterial polyphenols from olive oil mill waste waters. Journal of Applied Bacteriololgy 79 (1995) 393-398.
Özdemir, Z. Growth inhibition of Clavibacter Michiganensis subsp. Michiganensis and Pseudomonas syringae pv. tomato by olive mill wastewaters and citric acid. Journal of Plant Pathology 91 (2009) 221-224.
Medina, E.; Antonio, C.D.; Concepcion, R.; Manuel B. Comparison of the concentrations of phenolic compounds in olive oils and other plant oils: correlation with antimicrobial activity. Journal of Agricultural and Food Chemistry 54 (2006) 4954-61.
Pereira, A. P.; Ferreira, I.C.; Marcelino, F.; Valentão, P.; Andrade, P.B.; Seabra, R.; Estevinho, L.; Bento, A.; Pereira, J. A. Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrançosa) Leaves. Molecules 12 (2007) 1153-62.
Esmail, A.; Chahboun, N.; Mennane, Z.; Amiyare, R.; Abed, H.; Barrahi, M.; Qebibo, A.; Ouhssine, M.; Berny, E. H. Étude de l'activité antimicrobienne des margines issues de Fès Boulman vis à-vis de souches pathogènes. Journal of Material and Environmental Science 6 (2015) 869-876.
Belaqziz, M.; El-Abbassi, A.; Lakhal, E.K.; Agrafioti, E.; Galanakis, C.M. Agronomic application of olive mill wastewater: Effects on maize production and soil properties. Journal of environmental Management 171 (2016) 158-165.
Schneider, H.; Schwiertz, A.; Collins, M.D.; Blaut, M. Anaerobic transformation of quercetin-3-glucoside by bacteria from the human intestinal tract. Archives of Microbiology 171 (1999) 81-91.
Refbacks
- There are currently no refbacks.