Mechanical and damage properties of polyethylene reinforced with clay treatment

B. Chebbab, M. Djeziri, B. Bezzazi

Abstract


Abstract: This document is the subject of an experimental study for  composite material implementation with a polyethylene matrix (HDPE) embedded with clay particles. We carried out a chemical optimization applied to clay particles by characterizing the mechanical behavior as well as the damage of the elaborated composite material. The work is based on the following optimized procedure: a mixture of sodium thiosulfate (Na2S2O3) and clay cooled and centrifuged for 15 minutes. The clay pellet is rinsed twice with 0.05 M HCl for 3 to 4 hours. The mechanical properties of the composite material obtained are relative to the mass fraction of treated and untreated clay. The Young's modulus is found to change as the mass loadings of the injected treated clay change, with a marked improvement over virgin HDPE from 1590.90 to 1667.32 MPa, the yield strength from 28.68  to 31.73 MPa, and the ultimate tensile strength from 19.99  to 20.84 MPa. This positive variation is achieved at a maximum of 7% mass load of treated clay. Beyond this rate, the composite material experiences a drop in these same parameters due to the high concentration of clay. Scanning electron microscopy is used to see differences in dense microstructure between specimen granules.

Full Text:

PDF

References


Dantas de Oliveira, A. ; Augusto Gonçalves, Beatrice C. Polymer Nanocomposites with Different Types of Nanofiller. Nanocomposites, Recent Evolutions, (2019) doi: http://dx.doi.org/10.5772/intechopen.81329.

Kerstin, M. ; Elodie, B. ; Marcos, L. ; Maria, J.; Yolanda, E. ; Sanz José, M. ; Lagaron Oliver, M. ; Alvise, B. ; Steve, H. ; Uwe, B. ; Germán, P. ; Marius, J. ; Martina, L. ; Zuzana, S. ; Sara, C. ; and Markus, S. Review on the Processing and Properties of Polymer Nanocomposites and Nanocoatings and Their Applications in the Packaging, Automotive and Solar Energy Fields, Nanomaterials 7 (2017) 74.

Liang, J.Z. Reinforcement and quantitative description of inorganic particulate-filled polymer composites. Composites Part B 51 (2013) 224-232.

Gonzalez-Benito, J. ; Martinez-Tarifa, J. ; Sepúlveda-García, M.E. ; Portillo, R.A. ; Gonzalez-Gaitano, G. Composites based on HDPE filled with BaTiO3 submicrometric particles. Morphology, structure and dielectric properties. Polymer Testing 32(2013) 1342-1349.

Rohlmann, C.O. ; Fernanda, M. ; Horst, L. ; Quinzani, Marcelo, M. ; Failla, D. Comparative analysis of nanocomposites based on polypropylene and different montmorillonites » European Polymer Journal 44 (2008) 2749–2760.

Xiaoyu, M.; Zhe, W.; Zhongfu, Z. ; Xiaohua, D. ; Wuguo, B.; Tao, T. Morphology evolutions of organically modified montmorillonite/ polyamide 12 nanocomposites » Polymer 48 (2007) 2508 –2519.

Drozdov, A.D. ; Christiansen, J.C. Cyclic viscoplasticity of high-density polyethylene/montmorillonite clay nanocomposite . European Polymer Journal 43 (2007) 10–25.

Abu-Zurayk, R. ; Harkin-Jones, E. ; McNally, T. ; Menary, G. ; Martin, P. ; Armstrong, C. Biaxial deformation behavior and mechanical properties of a polypropylene/clay nanocomposite. Composites Science and Technology 69 (2009)1644–1652.

Qlihaa A. ; Dhimni, S. ; Melrhaka, F. ; Hajjaji, N. ; Srhiri, A. Caractérisation physico-chimique d’une argile Marocaine. J. Mater. Environ. Sci. 7 (5) (2016) 1741-1750.

Pelletier, M.; Thomas, F.; de Donato, P.; Michot, LJ. ; and Cases, JM. Infrared spectroscopic study of water vapor adsorption desorption by homoionic montmorillonites. The bending mode. In Clays for our future. Proceedings of the 11th International Clay Conference, Ottawa Canada. Kodama, H., Mermut, A.R., Torrance, J.C. (Eds). (1999a) ; 555-560.

Pezolet, M. ; Bonenfant, S., Dousseau, F., and Popineau Y. Conformation of wheat gluten proteins—Comparison between functional and solution states as determined by infrared spectroscopy. FEBS Lett 3(1992)247-250.

Srasra, E. Argile et acidité. Mécanisme de l’activation acide et propriétés résultantes. Thèse de Doctorat d’état en sciences physiques. (2002) Tunis.

Jahouach, W. Etude des propriétés physico-chimiques des huiles d’olive et de grignons d’olives décolorées par des argiles tunisiennes activées aux ondes ultrasonores. Thèse de Doctorat Sfax. (2012) Tunisie.

VD. Manuel Boutelspacher. Atlas of IR of clay minerals andtheir admixture, Elsevier scientific Publishing Company, Amesterdam, Oxford, New York.(1976).

Mellouk, S. ; Cherifi, S. ; Sassi, M. ; Marouf-Khelifa, K. ; Bengueddach, A. ; Schott, J. ; Khelifa, A. Intercalation of halloysite from Djbel Debagh (Algeria) and adsorption of copper ions. Appl. clay sci 44 (2009) 230-236.

Wilson, M.J. Clay mineralogy: Spectroscopic and chemical determinative methods, first. Ed. Chapman. and Hall. London (1995).

Houben, M.E. In situ characterization of the microstructure and porosity of Opalinus Clay (Mont Terri Rock Laboratory, Switzerland). Faculty of Georesources and Materials Engineering. The RWTH Aachen University, Germany. (2013).

Porfirio, M. ; Oisy, C.N. ; Raydel, H. ; Reinaldo, L. ; Borges, C. ; Caicedo, B. Study of the relationship between the hydromechanical soil behavior and microstructure of a structured soil. Earth Sci. Res. J. Vol 22 No. 2(2018)91-101.

Lim, A.J.M.S.; Syazwani, R.N.; Wijeyesekera, D.C. Impact of Oriented Clay Particles on X-Ray Spectroscopy Analysis. Soft Soil Engineering International Conference (2015) (SEIC2015).

Biliaderis, C.G. ; Zawistowski, J. Viscoelastic behavior of aging starch gels: effects of concentration, temperature and starch hydrolyzates on network properties. Cereal Chem 67(1990)240-246.

Tomasik, P.; Zaranyika, MF. Nonconventional methods of modification of starch. Adv. Carbohydr. Chem. Biochem. 51 (1995) 243–318.


Refbacks

  • There are currently no refbacks.