Kinetic study of bio-demineralization and bio-deproteinization of shrimp biowaste for chitin recovery

W. Arbia, L. Arbia, L. Adour, A. Amrane, H. Lounici, N. Mameri

Abstract


Abstract: Demineralization (DM) and deproteinization (DP) of shrimp shell Parapenaeus longirostris using Lactobacillus helveticus, depends on the composition of culture medium, and temperature of incubation. In a synthetic medium containing glucose, completely different conditions are required for chitin recovery: 300 g/L of glucose and 35°C for maximal DM (60%) and 80 g/L of glucose and 30°C for a maximum of DP (70%). The use of date’s juice shows that it is possible to extract chitin, in a single step, unlike the simple medium. The richness of the dates juice in mineral elements and the high concentration of reducing sugars (200 g/L) allowed for a maximum activity of proteolytic enzymes favored by a pH maintained constant at around pH 6 for 29h of fermentation, and a significant acidification expressed by a minimum pH of 4.7 which are reflected by rates of 83% and 63% of deproteinization and demineralization, respectively.

Full Text:

PDF

References


Wang, S.L.; Liang, T.W.; Yen Y.H. Bioconversion of

chitin-containing wastes for the production of

enzymes and bioactive materials. Carbohy. Polym. 84

(2011) 732-742.

Quitain, A.T.; Sato, N.; Daimon, H.; Koichiujie, F.

Production of Valuable Materials by Hydrothermal

Treatment of Shrimp Shells. Ind. Eng. Chem. Res. 40

(2001) 5885-5888.

Sato, H.; Mizutani, S.I.; Tsuge, S.; Aoi, K.; Takasu,

A.; Okada, M.; Kobayashi, S.; Kiyosada, T.; Shoda,

S.I. Determination of the degree of acetylation of

chitin/chitosan by pyrolysis-gas chromatography in

the presence of oxalic acid. Anal. Chem. 70 (1998) 7-

Einbu, A.; Vårum, K. M. Characterization of chitin

and its Hydrolysis to GlcNAc and GlcN.

Biomacromolecules 9 (2008) 1870-1875.

Yoshihiro, K.; Hideo, T.; Hajime, S.; Tomohiro, H.;

Hirohiko, H.; Masatoshi, K.; Tadayuki, I. Takeshi, T.

Interaction Force of Chitin-Binding Domains onto

Chitin Surface. Biomacromolecules 9 (2008) 2126–

Chang, K. L. B.; Tsai, G. Response Surface

Optimization and Kinetics of Isolating Chitin from

Pink Shrimp (Solenocera melantho) Shell Waste. J.

Agric. Food Chem. 45 (1997) 1900-1904.

Raja, R.; Chellaram, C.; John, A. A. Antibacterial

properties of chitin from shell wastes. Indian Journal

of Innovations and Developments 1 (2012) 7-10.

No, H. K.; Cho, Y.I.; Meyers, S. P. Dye binding

capacity of commercial chitin products. J. Agric.

Food Chem. 44 (1996) 1939- 1942.

Longhinotti, E.; Pozza, F.; Furlan, L.; Sanchez, M. N.

M.; Klug, S. M.; Laranjeira, M. C. M.; Fávere, V. T.

Adsorption of Anionic Dyes on the Biopolymer

Chitin. J. Braz. Chem. Soc. 9 (1998) 435- 440.

Mahmoud, N. S.; Ghaly, A.E.; Arab, F.

Unconventional approach for demineralization of

deproteinized crustacean shells for chitin production.

American J. Biochem. Biotechnol. 3 (2007) 1-9.

Franca, E.F.; Lins, R.D.; Freitas, L.C.; Straatsma, T.

P. Characterization of Chitin and Chitosan Molecular

Structure in Aqueous Solution. J. Chem. Theory

Comput. 4 (2008) 2141–2149.

Crini, G.; Guibal, E.; Morcellet, M.; Torri, G.; Badot,

P. M. Chitine et chitosane. Du biopolymère à

l’application. 1st ed., Presses Universitaires de

Franche-Comté : France (2009)19-54.

No, H. K.; Meyers, S. P.; Lee, K. S. Isolation and

characterization of chitin from crawfish shell waste.

J. agric. food chem. 37 (1989) 575-579.

Synowiecki, J.; Al-Khateeb, N.A.A.Q. The recovery

of protein hydrolysate during enzymatic isolation of

chitin from shrimp Crangon crangon processing

discards. Food Chem. 68 (2000) 147-152.

Wang, S.L.; Chen, S.J.; Wang, C.L. Purification and characterization of chitinases and chitosanases from a new species strain Pseudomonas sp. TKU015 using shrimp shells as a substrate. Carbohydr. Res. 343

(2008) 1171–1179.

Healy, M.; Green, A.; Healy, A. Bioprocessing of marine crustacean shell waste. Acta Biologica 23 (2003) 151- 160.

Shirai K.; Guerrero, I.; Huerta S.; Saucedo, G.; Casillo A.; Obdulia, G.R.; Hall M.G. Effect of initial glucose and inoculation level of lactic acid bacteria in shrimp waste ensilation. Enz. Microb. Technol. 28 (2001) 446- 452.

Cho, Y.I.; No, H.K.; Meyers, S.P. Physicochemical characteristics and functional properties of various commercial chitin and chitosan products. J. Agric. Food Chem. 46 (1998) 3839-3843.

No, H.K.; Lee, S.H.; Park, N.Y.; Meyers, S.P. Comparison of physicochemical, binding, and antibacterial properties of chitosans prepared without and with deproteinization process. J. Agric. Food Chem. 51 (2003) 7659- 7663.

Suzuki, Y. ; Okamoto, Y. ; Morimoto, M.; Sashiwa, H.; Saimoto, H.; Tanioka, S. I.; Shigemasa, Y.; Minami, S. Influence of physico-chemical properties of chitin and chitosan on complement activation. Carbohydr. Polym. 42 (2000) 307–310.

Tolaimate, A.; Desbières, J.; Rhazi, M.; Alagui, A.; Vincendon, M.; Vottero, P. On the influence of deacetylation process on the

physicochemical characteristics of chitosan from squid chitin. Polym. 41 (2000) 2463–2469.

Younes, I.; Rinaudo, M. Chitin and Chitosan Preparation from Marine Sources, Structure, Properties and Applications. Mar. Drugs 13 (2015) 1133-1174.

Xu, Y.; Gallert, C.; Winter, J. Chitin purification from shrimp wastes by microbial deproteination and decalcification. Appl. Microbiol. Biotechnol. 79 (2008) 687–697.

Dowson, V. H.; Aten, A. Dates: Handling, Processing and Packing. FAO Agricultural Development (1962).

Nancib, N.; Nancib, A.; Boudjelal, A.; Benslimane, C.; Blanchard, F.; Boudrant, J. The effect of supplementation by different nitrogen sources on the production of lactic acid from date juice by Lactobacillus casei subsp. Rhamnosus. Bioresource Technol. 78 (2001) 149- 153.

Adour, L.; Arbia, W.; Amrane, A.; Mameri, N. Combined use of waste materials – recovery of chitin from shrimp shells by lactic acid fermentation supplemented with date juice waste or glucose. J. Chem. Technol. Biotechnol. 83 (2008) 1664–1669.

AFNOR (N.F. V04-206).

Mirzadeh, H.; Nakisa, Y.; Saeed, A.; Hossein, A.; Mohagheghi, A.M.; Farzin, H. Preparation of chitosan derived from shrimp’s shell of persian Gulf as a blood hemostasis agent. Iranian Polym. J. 1 (2002) 63- 68.

Rao, M.S.; Muňoz, J.; Stevens, W.F. Critical factors in chitin production by fermentation of shrimp biowaste. Appl. Microbiol. Biotechnol. 54 (2000) 808- 813.

sugar beet juice by Lactobacillus delbrueckii. Biotechnol. Lett. 29 (2007) 1329- 1332.

Leclerc, H.; Gaillard, J. L.; Michel, S. Microbiologie générale : La bactérie et le monde bactérien, Doin ed. Paris (1995) 535.

Kotzaminidis, Ch.; Roukas, T.; Skaracis, G. Optimization of lactic acid production from beet molasses by Lactobacillus delbrueckii NCIMB 8130. World J. Microbiol. Biotechnol. 18 (2002) 441-448.

Pacheco, N.; Garnika-Gonzalez, M. ; Ramírez, J. Y.; Flores-Albino, B.; Gimeno, M. ; Bárzana, E.; Shirai, K. Effect of temperature on chitin and astaxanthin recoveries from shrimp waste using lactic acid Chantal, M.; Amiot, J.; Savoie, L.; Goulet, J. The effect of milk fermentation by Lactobacillus helveticus of the release of peptides during In Vitro digestion. J. Dairy Sci. 79 (1996) 971- 979.

Axelsson, L. Lactic acid bacteria. Sepposalminen; Attevonwright and ouwehand A. Marceldekker, Inc, New York. Basel (2004).

Zakaria, Z.; Hall, G. M.; Shama, G. Lactic acid fermentation of scampi waste in a rotating horizontal bioreactor for chitin recovery. Process Biochem. 33 (1998) 1- 6.

Calabia, P. B.; Tokiwa, Y. Production of D-lactic acid from sugarcane molasses, sugarcane juice and bacteria. Bioresource Technol. 100 (2009) 2849- 2854.

Amrane, A. Effect of inorganic phosphate on lactate production by Lactobacillus helveticus grown on supplemented whey permeate. J. chem. Technol. Biotechnol. 98 (2000) 223- 228.

Norris, V.; Grant, S.; Freestone, P.; Canvin, J.; Sheikh, F. N.; Toth, I. Calcium signalling in bacteria. J. Bacteriol. 178 (1996) 3677–3682.

Exterkate, F. A.; Calting, A. C. Role of calcium in ctivity and stability of the Lactococcus lactis cell envelope proteinase. Appl. Environ. Microbiol. 65 (1996) 1390–1396.


Refbacks

  • There are currently no refbacks.