Assessment Of The Environmental Impacts Resulting From The Presence Of Surface Agents In The Discharge From An Urban Water Cleaning Station In Algeria By Life Cycle Assessment Method
Abstract
The poor assessment of the environmental performance of water treatment systems led us to apply the life cycle assessment approach to a wastewater treatment plant. The purpose of our work is to evaluate the environmental impacts of the surfactants release from an existing urban wastewater treatment plant with a capacity of 35000 m3/inhabitant located in the city center of Boumerdés 45 km from the capital Algiers
The article presents an evaluation of the environmental impacts of the surfactants release .This evaluation was established using Simapro8.1 software and the Midpoint ILCD version 1.03 methods.
The results of evaluation show four impact categories are evaluated; - Human toxicity, Fresh water eutrophication, Marine eutrophication and Fresh water ecotoxicity. All the impact categories evaluated contribute to the surfactants fixed in the functional unit alcohol ether sulfate (AES), hexadecyl trimethyl bromide ammonium (CTAB) and Betaine of lauramidopropyl (BLP) of three different anionic, cationic and amphoteric types, respectively.
Finally, we conclude from the results obtained that the value of the impact of ecotoxicity is the highest (3, 24E-4 CTUe) compared to the other impact categories whose impact category represents the impact significant.
Full Text:
PDFReferences
Ying, G. Fate behavior and effects of surfactants and their degradation products in the Environment International .32(2006) 417–431.
Zhang, C. ; Cui, F.; Zeng, GM.; Jiang, M.; Yang, ZZ.; Yu, ZG.; Zhu, MY.; Shen, LQ. Quaternary
ammonium compounds (QACs): A review on occurrence, fate and toxicity in the environment. Science of the Total Environment 518(2015) 352-362.
Traverso-Soto, JM.; Lara-Martin, PA.; Gonzalez-Mazo, E.; Leon, VM. Distribution of anionic and nonionic surfactants in a sewage-impacted Mediterranean coastal lagoon: Inputs and seasonal variations. Science of the Total Environment 503(2015) 87-96.
Isobe, T.; Nishiyama, H.; Nakashima, A.; Takada, H. Distribution and behavior of nonylphenol, octylphenol and nonylphenol monoethoxylate in okyo metropolitan area: Their association with aquatic particles and sedimentary distributions. Environmental Science and Technology 35(2001) 1041-1049
Lankey, RL.; Anastas, PT. Life-cycle approaches for assessing green chemistry technologies. Industrial and Engineering Chemistry Research, 41(18) (2002), 4498-4502.
Joshi, S.; Product environmental life‐cycle assessment using input‐output techniques. Journal of Industrial Ecology, 3(2‐3) (1999) 95-120.
Tabatabaie, S. M. H. ; Tahami, H.; Murthy, G.S. A regional life cycle assessment and economic analysis of camelina biodiesel production in the Pacific Northwestern US. Journal of Cleaner Production, 172, (2018) 2389-2400.
EPA, United States Environmental Protection Agency. Available at: www.epa. 2016
ISO14040:2006.Environmental management – life cycle assessment
ISO14044:2006.Environmentalmanagement – life cycle assessment
Tulevech, S. M.; Hage, D. J.;Jorgensen, S. K.; Guensler,C.L.; Himmler, R.; Gheewala, S.H. Life cycle assessment: A multi-scenario case study of a low-energy industrial building in Thailand. Energy and Buildings, 168, (2018) 191-200
Ecoinvent. Ecoinvent—The World’s Most Consistent And Transparent Life Cycle Inventory Database, [online], available: ecoinvent.org (accessed 13.06.17).
Iqbal, M.I.; Himmler, R; Gheewal, S.H. Environmental impacts reduction po- tential through a PV based transition from typical to energy plus houses in Thailand: a life cycle perspective, Sustainable Cities Soc. 37 (2018) 307–322. https://doi.org/10.1016/j.scs.2017.11.028 .
Leclerc, E. Les détergents et la pollution des eaux ». (1977) Eyrolles, Paris.
Prats, D. ; Lopez, C.; Vallejo, D.; Varo, P.;Leon, V.M. Effect of temperature on the biodegradation of linear alkylbenzene sulfonate and alcohol ethoxylate. Journal of Surfactant and Detergent. 9 1, (2006) 69–75. Principles and frame work. CEN (European Committee for Standardisation), Res. J. 80, 1721e1737.
Birch, R. Journ. of Chemical Technology and biotechnology 50 3 411(1992) Brussels.
Perez, T. ; Sartoretto, S. ; Soltan, D. ; Capo, S. ; Fourt, M. ; Dutrieux, E. ; Vacelet, J. ;Harmelin, J.G. ; Rebouillon, P. Etude bibliographique sur les bioindicateurs de l’état du milieu marin. Système d’évaluation de la Qualité des Milieux littoraux – Volet biologique. Rapport Agences de l’Eau, 4 fascicules, 642 pp(2000).
Mariani, L. ; Pascale, D.De.; Faraponova, O.; Tornambe, A.; Sarni, A.; Giuliani, S.; Rug-gero G. ; Onorati, F.; Magaletti, E. The Use of a Test Battery in MarineEcotoxicology: The Acute Toxicity of Sodium Dodecyl Sulfate. Wiley Inter-Science, pp. (2006) 373–379.
Concetta, M.M.; Caterina, F.; Vincenzo, A. L; Marilena, S.; Francesca, T.; Andrea, S. Effect of sodium dodecyl sulfate (SDS) on stress response in theMediterranean mussel (Mytilus Galloprovincialis): Regulatory volumedecrease (Rvd) and modulation of biochemical markers related tooxidative stress Concetta Aquatic Toxicology 157 (2014) 94–100gov (accessed 05.03.2017).
Lourdes, P.; Aurora, P.; Ramon, P.; MRosa Infante. Gemini surfactants from natural amino acids ;Advances in Colloid and Interface Science 205 (2014) 134–155.
Tehrani-Bagha, A.R.; Oskarsson, H.; van Ginkel, C.G.; Holmberg, K. Cationic ester-containing gemini surfactants: chemical hydrolysis and biodegradation. Journal of Colloid and Interface Science312,(‘2007) 444–452.
Tawfik, S.M. Synthesis, surface, biological activity and mixed micellar phase properties of some biodegradable gemini cationic surfactants containing oxycarbonyl groups in the lipophilic part. 2015.
Levec, J.; Pintar, A. Catalytic oxidation of aqueous solutions of organics. An effective method for removal of toxic pollutants from waste waters. Catalysis today, 24(1995) (1-2) 51-58.
Xue, Y.; Xiao, H. ; Zhang, Y. Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts. International Journal of Molecular Sciencesi. 16, (2015) 3626e3655.
Mori, I.C.; Arias-Barreiro, C.R.;Koutsaftis, A.; Ogo, A.; Kawano, T.; Yoshizuka, K.,Inayat-Hussain, S.H., Aoyama, I. Toxicity of tetra methyl ammonium hydroxideto aquatic organisms and its synergistic action with potassium iodide.Chemosphere 120, (2015) 299e304.
Simoncic, B.; Tomsic, B. Structures of novel antimicrobial agents for textiles e a review. Text requirements and guidel ines.CEN (European Committee for Standardisa2010.
Yaacoubi, A. ; Mazet, M. ; & Dusart, O. Competitive effect in bi-solute adsorption onto activated carbon: DSS, alcohols and phenols and solutes. Water Research, 25(1991) (8) 929-937.
Refbacks
- There are currently no refbacks.