Biopolymers isolation (chitin and chitosan) from mushroom biomass of Pleurotus ostreatus (Jacq: Fries) Kummer

N. Benbelkacem belabbas, M. Mansour Benamar, N. Ammar-Khodja, L. Adour

Abstract


Chitin and chitosan, polysaccharides similar to cellulose, have shown their importance in many fields: biology, medicine, environment, pharmacy, agribusiness, etc. Published research over the last 5 years have proposed fungal biomasses development as an alternative source to marine biomasses, particularly Basidiomycetes that are widely used for biomass production due to cell wall polysaccharides. The aim of this study is to extract chitin and chitosan from mycelium of a Local edible Mushroom strain, Pleurotus ostreatus (Jacq: Fries) Kummer (LPO). The approach consist of using condensed mycelium recovered during harvesting period of LPO grown on an original mixture of olive pomace (OP), coffee grounds (CG) and wheat straw (WS) under solid state fermentation. Chemical treatments based on 1M NaOH at 121°C for 15 min and 0.35M CH3COOH at 95°C for 8 hours enable to extract chitin and chitosan with optimal yields of, respectively, 175.92 mg and 3.7 mg per g of dry biomass. Compared to commercial marine chitin (Sigma Aldrich), Fourier Transform Infra-Red spectroscopy (FTIR) analyzes highlighted strong similarity in peaks but with low intensities with the condensed mycelium of LPO. Scanning electron microscopy (SEM) analysis showed a crystalline nanofibrous structure for chitin and a smooth and firm surface without nanofibers and nanopores for chitosan. Our findings suggest that LPO is a potential candidate to produce chitin and chitosan by bioconversion of an agro-industrial wastes mixture.

Full Text:

PDF

References


New, N.; Stevens, W.F.; Montet, D.; Tokura, S. Decomposition of myceliar matrix and extraction of chitosan from Gongronella butleri USDB 0201 and Absidia coerulea reak ATCC 14076. Int. J. Biol. Macromol 43 (2008) 2-7.

Kanmani, P.; Aravind, J.; Kamaraj, M.; Sureshbabu, P.; Karthikeyan, S. Environmental applications of chitosan and cellulosic biopolymers: A comprehensive outlook. Bioresour. Technol 242 (2017) 295-303.

Ikeda, I.; Sugano, M.; Yoshida, K.; Sasaki, E.; Iwamoto, Y.; Hatano, K. Effects of chitosan hydrolysates on lipid absorption and on serum and liver lipid concentration in rats. J. Agric. Food Chem 41 (1993) 431–435.

New, N.; Maeda, Y.; Stevens, W.F.; Furuike, T.; Tamura, H. Growth of fibroblast cell NIH/3T3 on chitosan and chitosan–glucan complex scaffolds. Polymer 56 (2007) 2181.

Aranaz, I.; Mengibar, M.; Harris, R.; Paños, I.; Miralles, B.; Acosta, N.; Galed, G.; Heras, Á. Functional characterization of chitin and chitosan. Curr. Chem. Biol 3 (2009) 203-230.

Kleekayai, T.; Suntornsuk, W. Production and characterization of chitosan obtained from Rhizopus oryzae grown on potato chip processing waste. World J. Microbiol. Biotechnol 27 (2011) 1145–1154.

Muzzarelli, R. A. A. Chitin. 1st edition Pergamon Press, New York (1977) 326p.

Wan, A. C. A.; Tai, B. C. U.; Chitin A promising biomaterial for tissue engineering and stem cell technologies. Biotechnol. Adv 31 (8) (2013) 1776–85.

Wu, T. Production and Characterization of Fungal chitin and chitosan. Master thesis of Science Degree. The University of Tennessee, Knoxville (2004) 84p.

Roberts, G. A. F. Chitin Chemistry MacMillan Press, London (1992) 350 p.

Dutta, P. K.; Ravikumar, M. N. V.; Dutta, J. Chitin and chitosan for versatile applications. J. Macromol. Sc. C 42 (3) (2002) 307-354.

Felse, P. A.; Panda, T. Studies on applications of chitin and its derivatives. Bioprocess Eng 20 (1999) 505-515.

Wu, T.; Zivanovic, S.; Draughon, F. A.; Sams, C. E. Chitin and chitosan value-added products from Mushroom waste. J. Agric. Food Chem 52 (26) (2004) 7905-7910.

Cai, J.; Yang, J.; Du, Y.; Lihong, F.; Qiu, Y.; Kennedy, J. F. Enzymatic preparation of chitosan from the waste Aspergillus niger mycelium of citric acid production plant. Carbohydr. Polym 64 (2006) 151–157.

Rane, K. D.; Hoover, G. D. An evaluation of alkali and acid treatments for chitosan extraction from fungi. Process Biochem 28 (1993a) 115–118.

Rane, K. D.; Hoover, D. G. Production of chitosan by fungi. Food Biotechnol 7(1) (1993b) 11-33. Published online: 09 Dec 2009.

Tan, S. C.; Tan, T. K.; Wong, S. M.; Khor, E. The chitosan yield of Zygomycetes at their optimum harvesting time. Carbohydr. Polym 30 (1996) 239–242.

Suntornsuk, W.; Pochanavanich, P.; Suntornsuk, L. Fungal chitosan production on food process-sing by-products. Process. Biochem 37 (2002) 727–729.

Kanimozhi, S.; Ramya, D.; Menaga Gandhi, M. R. Production and optimization of chitosan from Aspergillus niger by solid state and submerged fermentation and evaluation of its antibacterial and antioxidant activity. D.I.T 6 (2) (2014) 141-148.

Aili, D.; Adour, L.; Houali, K.; Amrane, A. Effect of temperature in Chitin and Chitosan production by solid culture of Penicillium Camembertii on YPG medium. I. J. Biol. Macromol., Elsevier 133 (2019) 998-1007.

Abdelghani, H.; Hamid, S.; Sami, B. Chitin from Agaricus bisporus: Extraction and characterization. Int. J. Biol. Macromol 117 (2017) 1334–1342.

Ifuku, S.; Nomura, R.; Morimoto, M.; Saimoto, H. Preparation of chitin nanofibers from Mushrooms. Materials 4 (2011) 1417-1425.

Vetter, J. Chitin content of cultivated mushrooms Agaricus bisporus, Pleurotus ostreatus and Lentinula edodes. Food Chem 102 (1) (2007) 6-9.

Di Mario F., Rapanà F. P., Tomati U., Galli E. Chitin and chitosan from Basidiomycetes. Int. J. Bio. Macromol 43 (2008) 8–12.

Ospina Álvarez, S.P.; Ramírez Cadavid, D.A.; Escobar Sierra, D. M.; Ossa Orozco, C. P.; Rojas Vahos, D. F.; Zapata Ocampo, P.; Atehortúa, L. Comparison of extraction methods of chitin from Ganoderma lucidum mushroom obtained in submerged culture. BioMed. Res. Int 7p (2014).

Crestini, C.; Kovac, B.; Giovannozzi-Sermanni, G. Production and isolation of chitosan by submerged and solid-state fermentation from Lentinus edodes. Biotechnol. Bioeng 50 (1996) 207–210.

Khalaf, S. A. Production and characterization of fungal chitosan under solid-state fermentation conditions. Int. J. Agric. Biol 6 (2004) 1033–1036.

Yen, M.T.; Mau, J. L. Preparation of fungal chitin and chitosan from shiitake stipes. Fung. Sci 21 (2006) 1–11.

Bonatti, M.; Soares, H.; Karnopp, P.; Aparecida Furlan, S. Evaluation of Pleurotus ostreatus and Pleurotus sajor-caju nutritional characteristics when cultivated in different lignocellulosic wastes. Food Chem 88 (2004) 425–428.

Erdogan, S.; Kaya, M.; Akata, I. Chitin extraction and chitosan production from cell wall of two Mushroom species (Lactarius vellereus and Phyllophora Ribis). AIP Conference Proceedings 1809, 020012 (2017).

Kaya, M.; Akata, I.; Baran, T.; Mentes, A. Physicochemical properties of chitin and chitosan produced from medicinal fungus (Fomitopsis pinicola). Food Biophys 10 (2015) 162-168.

Johnson, B. R.; Chen, G. C. Occurrence and inhibition of chitin in cell walls of wood-decay fungi. Wood Res. Holzforschung 37 (1983) 255–259.

Chen, G. C.; Johnson, B. R. Improved colorimetric determination of cell wall chitin in wood decay fungi. A.E.M 46 (1983) 13–16.

Velazquez Cedeño, M. A. Compétions entre Pleurotus ostreatus et Trichoderma sp en culture sur la paille de blé : rôle des communautés bactériennes du substrat et des laccases de Pleurotus. Thèse Doctorat de l’Université Paul Cézanne (Air Marseille 3) en Biol. Pop. Eco. Ecole doctorat science de l’environnement (2005) 166p.

Mansour-Benamar, M. Valorisation de résidus agricoles par la culture de deux souches de champignons comestible du genre Pleurotus. Thèse Doctorat Sci. Biol., option B.V., F.S.B.S.A., Université Mouloud Mammeri de Tizi-Ouzou (2016) 229 p.

Amrane, T.; Belkacemi, T. Valorisation de résidus agricoles par la culture d’une souche locale d’un champignon comestible. Mémoire de master 2 en Sc. Bio., spécialité Protec. Envi., F.S.B.S.A. Université Mouloud Mammeri de Tizi-Ouzou (2017) 42p.

Roberts, G. A. F. Chapter_Structure of Chitin and Chitosan. Chitin Chemistry (1992)

Mansour-Benamar, M.; Savoie, J. M.; Chavant, L.; Lebsir, R. Valorisation du marc de café brut par la culture d’une souche locale de champignon comestible, Pleurotus ostreatus. Sci. Tech. Dev. ANDRU 2 (2007) 102 – 116.

Johney, J.; Eagappan, K.; Ragunathan, R. R. Microbial extraction of chitin and chitosan from Pleurotus spp, its characterization and antimicrobial activity. Int. J. Curr. Pharm. Res. 9 (1) (2016) 88-93.

Hajji, S.; Younes, I.; Ghorbel-Bellaaj, O.; Hajji, R.; Rinaudo, M.; Nasri, M.; Jellouli, K. Structural differences between chitin and chitosan extracted from three different marine sources. Int. J. Biol. Macromol 65 (2014) 298–306

Wang, Y. ; Chang, Y. ; Yu, L. ; Zhang, C. ; Xu, X. ; Xue, Y. ; Li, Z. ; Hue, C. Carbohyd. Polym 92 (2013) 90–97.

Maghsoodi, V.; Yaghmaei, S. Comparison of Solid Substrate and Submerged Fermentation for Chitosan Production by Aspergillus niger. Transactions C: Chemistry and Chemical Engineering 17(2) (2010) 153-157.

Bornet, A.; Teissedre, P. L. Intérêt de l'utilisation de chitine, chitosane et de leurs dérivés en œnologie. J. Int. Sci. Vigne Vin, 39 (4) (2005) 199-207.

Patria, A. Production and characterization of Chitosan from shrimp shells waste. AACL Bioflux 6 (4) (2013) 339-344.

Cardenas, G.; Cabrera, G.; Taboada, E.; Miranda, S. P. Chitin Characterization by SEM, FTIR, XRD, and 13C Cross Polarization/Mass Angle Spinning NMR. Journal of Applied Polymer Science. 93 (2004) 1876–1885.


Refbacks

  • There are currently no refbacks.