DFT calculations of Energies and thermodynamics parameters of Aniline sorption on Montmorillonite surface (MMTs)

A. Hakem, Z. Chaieb, A. BenAhmed, Z. Zizi

Abstract


The adsorption mechanisms of aniline (C6H5NH2), on montmorillonite surface (MMTs) have been investigated using density functional theory (DFT) calculation with the three parameter compound function of Becke (B3LYP) level, in 6-31++G(d,p) basis sets. These theoretical investigations illustrate that the interactions between the amino group in aniline compound and the silicon atom of siloxane surface of (MMTs) play the key role in the sorption of aniline on (MMTs). Hydrogen bonds between the hydrogen atoms of the amino group and basal (O) oxygen atoms of silicate maintain the location of aniline. The sequences of computations explain that the adsorption process of aniline on the (MMTs) is exothermic. We have a physisorption process with an adsorption energy of -36.66 KJ mol-1 and an increasing in the randomness at the Aniline/MMTs interface during the adsorption.


Full Text:

PDF

References


Ma, L.; Chen, Q.; Zhu, J.; Xi, Y.; He, H.; Zhu, R.; Tao, Q.; Ayoko, G. A. Adsorption of Phenol and Cu(II) onto Cationic and Zwitterionic Surfactant Modified Montmorillonite in Single and Binary Systems. Chemical Engineering Journal 283(2016) 880–888.

DOI: https://doi.org/10.1016/j.cej.2015.08.009

Sparks, D. L. Toxic Metals in the Environment: The Role of Surfaces. Elements 1 (4) (2005) 193–197.

DOI: https://doi.org/10.2113/gselements.1.4.193

Mouzon, J.; Bhuiyan, I. U.; Hedlund, J. The Structure of Montmorillonite Gels Revealed by Sequential Cryo-XHR-SEM Imaging. Journal of Colloid and Interface Science 465 (2016) 58–66.

DOI: https://doi.org/10.1016/j.jcis.2015.11.031

Dening, T. J.; Joyce, P., Rao, S.; Thomas, N.; Prestidge, C. A. Nanostructured Montmorillonite Clay for Controlling the Lipase-Mediated Digestion of Medium Chain Triglycerides. ACS Applied Materials & Interfaces 8 (48) (2016) 32732–32742.

DOI: https://doi.org/10.1021/acsami.6b13599

Yuan, G. D.; Theng, B. K. G.; Churchman, G. J.; Gates, W. P. Clays and Clay Minerals for Pollution Control. In Developments in Clay Science; Elsevier 5(2013) 587–644.

DOI: https://doi.org/10.1016/B978-0-08-098259- 5.00021-4

Frisch, M.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A. Gaussian 09, Revision A. 02, Gaussian. Inc Wallingford CT, (2009)200.

Katti, D. R.; Srinivasamurthy, L.; Katti, K. S. Molecular Modeling of Initiation of Interlayer Swelling in Na–Montmorillonite Expansive Clay. Canadian Geotechnical Journal 52 (9) (2015)1385–1395.

DOI: https://doi.org/10.1139/cgj-2014-0309

Dennington, R.; Keith, T.; Millam, Journal Semichemistry Incorpation, Shawnee Mission KS, 2009.

Sinclair, W. E.; Pratt, D. W. Structure and Vibrational Dynamics of Aniline and Aniline–Ar from High Resolution Electronic Spectroscopy in the Gas Phase. The Journal of Chemical Physics 105 (18) (1996)7942–7956.

DOI: https://doi.org/10.1063/1.472710

Tankov, I.; Yankova, R.; Genieva, S.; Mitkova, M.; Stratiev, D. Density Functional Theory Study on the Ionic Liquid Pyridinium Hydrogen Sulfate. Journal of Molecular Structure 1139 (2017) 400–406 DOI: https://doi.org/10.1016/j.molstruc.2017.03.040.

Miller, B.J.; Lane, J. R.; Kjaergaard, H. G. Intramolecular OH⋯π Interactions in Alkenols and Alkynols. Physical Chemistry Chemical Physics 13 (31) (2011) 14183.

DOI: https://doi.org/10.1039/c1cp21190k

Samaraweera, M. A. On the Use of the Linear Interaction Energy Method to Predict Affinities of Charged Aromatic Ammines to Naturally Occurring Clay Minerals Doctoral Dissertations, December 15, 2015. http://digitalcommons.uconn.edu/dissertations/996.


Refbacks

  • There are currently no refbacks.