Analysis and NOx prediction in turbulent non-premixed swirling flame
Abstract
Full Text:
PDFReferences
Selle, L.; Lartigue, G.; Poinsot, T.; Koch, R. K.; Schildmacher, U.; Krebs, W.; Kaufman, P.; Veynante, D. Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes. Combustion and Flame 137 (2004) 489-505.
Claypoleet, T. C.; Syred, N. The effect of swirl burner aerodynamics on NOx formation. Proc. Combust. Institute. 18 (1981) 81-89.
Magnussen, B. F.; Hjertager, B. H. On mathematical models of turbulent combustion with special emphasis on soot formation and combustion. Proceedings of the Combustion Institute. 16 (1976) 719-729.
Roux, S.; Lartigue, G.; Poinsot, T.; Meier, U.; Berat, C. Studies of mean and unsteady flow in a swirled combustor using experiments. Acoustic Analysis and Large Eddy Simulations. Combustion and Flame 141 (2005) 40-54.
Lalmi, D.; Hadef, R. Evaluation of the statistical approach for the simulation of a swirling turbulent flow. American Journal of Mechanical and Engineering AJME, Vol. 03, N°3A (2015) 27-31.
Merkle, K.; Haessler, H.; Büchner, H.; Zarzalis, N. Effect of CO and counter-swirl on the isothermal flow and mixture field of an airblast atomizer nozzle. International Journal of Heat and Fluid Flow 24 (2003) 529-537.
Lalmi, D.; Hadef, R. Evaluation of the Performance of two Turbulent Models in the prediction of a swirling flow. International Journal of Mechanics and Energy (IJME) Vol. 3, Issue 1, (2015), ISSN: 2286-584
Lalmi, D.; Hadef, R. Numerical simulation of CO and counter swirls on the isothermal flow and mixture field in a combustion chamber. Advances and Applications in Fluid Mechanics AAFM, Vol.18, issue 2 (October 2015) 199-212.
Syred, N.; Beer, J. M. Combustion in swirling flows: a review. Combustion and Flame 23/2 (1974) 143-201. http://dx.doi.org/10.1016/0010-2180(74)90057-1
Pierce, C. D.; Moin, P. Large eddy simulation of a confined coaxial jet with swirl and heat release. American Institute of Aeronautics and Astronautics Paper (1998) 2892.
Pierce, C. D.; Moin, P. Method for generating equilibrium swirling in flow conditions. American Institute of Aeronautics and Astronautics 36/7 (1998)1325-327.
http://dx.doi.org/10.2514/3.13970
Lalmi, D.; Hadef, R. Numerical simulation of co and counter swirls on the isothermal flow and mixture field in a combustion chamber. Advances and Applications in Fluid Mechanics 18/2 (2015) 199. http://dx.doi.org/10.2514/6.1998-2892
Merkle, K.; Haessler, H.; Büchner, H.; Zarzalis, N. Effect of CO and counter swirl on the isothermal flow and mixture field of an airblast atomizer nozzle. International Journal of Heat and Fluid Flow 24/4 (2003) 529-537. http://dx.doi.org/10.1016/S0142-727X(03)00047-X.
Zhiyin, Y. Large-eddy simulation: Past, present and the future. Chinese journal of Aeronautics 28/1 (2015) 11-24.
http://dx.doi.org/10.1016/j.cja.2014.12.007
Nickolaus, D. A.; Smith, C. E. Analysis of highly swirled, turbulent flows in dump combustor with exit contraction. The American Society Of Mechanical Engineers Paper N° GT2005-68160 (2005) 97-110. http://dx.doi.org/10.1115/GT2005-68160
McIlwain, S.; Pollard, A. Large eddy simulation of the effects of mild swirl on the near field of a round free jet. Physics of Fluids 14/2 (2002) 653-661. http://dx.doi.org/10.1063/1.1430734
Kumar, R.; Sood, S.; Sheikholeslami, M.; Shehzad, S. A. Nonlinear thermal radiation and cubic autocatalysis chemical reaction effects on the flow of stretched nanofluid under rotational oscillations. Journal of Colloid and Interface Science 505 (2017) 253-265. https://doi.org/10.1016/j.jcis.2017.05.083
Kumar, R.; Sood, S. Combined influence of fluctuations in the temperature and stretching velocity of the sheet on MHD flow of Cu-water nanofluid through rotating porous medium with cubic auto-catalysis chemical reaction. Journal of Molecular Liquids 237 (2017) 347-360.
http://dx.doi.org/10.1016/j.molliq.2017.04.054
Manoj K. T.; Rajsekhar, P. Numerical analysis of natural convection in a triangular cavity with different configurations of hot wall. International Journal of Heat and Technology Vol. 35, No. 1, (March 2017) 11-18. DOI: 10.18280/ijht.350102.
Zakaria, M.; Aouissi, M.; Toufik, B. A Numerical study of swirl effects on the flow and flame dynamics in a lean premixed combustor. International Journal of Heat and Technology vol.34/2 (June 2016) 227-235. DOI: 10.18280/ijht.340211
Messaoud, H.; Bachir, M.; Djamel, S. Numerical study of mixed convection and flow pattern in various across-shape concave enclosures. International Journal of Heat and Technology 35 (2017) 567-575.
Tomczak, H. J.; Benelli, G.; Carrai, L.; Cecchini, D. Investigation of a gas turbine combustion system fired with mixtures of natural gas and hydrogen. IFRF Combustion Journal, (2002) 1-19.
Furuhata, T.; Amano, S.; Yotoriyama, K.; Arai, M. Development of can-type low NOx combustor for micro gas turbine (fundamental characteristics in a primary combustion zone with upward swirl). Fuel Journal 86(15), 2463-2474.
Benini, E.; Pandolfo, S.; Zoppellari, S. (2009). Reduction of NO emissions in a turbojet combustor by direct water/steam injection: Numerical and experimental assessment. Applied Thermal Engineering 29/17-18, (2007) 3506-3510.
Jaafar, M. M.; Jusoff, K.; Osman, M. S.; Ishak, M. S. A. Combustor aerodynamic using radial swirler. International Journal of Physical Sciences 6/13 (2011) 3091-3098.
Ghenai, C. Combustion of syngas fuel in gas turbine can combustor. Advances in Mechanical Engineering 2 (2010) 342357.
Refbacks
- There are currently no refbacks.