Ambient Temperature Effect on the Performance of Gas Turbine in the Combined Cycle Power Plant
Abstract
Full Text:
PDFReferences
Mulvaney, D.; Busby, J.; Bazilian, MD. Pandemic disruptions in energy and the environment. https://doi.org/10.1525/elementa.052 (2020).
Spath, P L.; Mann, M K. Life cycle assessment of a natural gas combined cycle power generation system. Web. https:// doi:10.2172/776930 (2000).
Raja, J.; Christober Asir Rajan, C.; Thiagarajan, Y. Frequency excursion and temperature control of combined cycle gas plant including SMES. International Journal of Computer and Electrical Engineering 2 (2010) 1793-8163.
Rahman, M, M.; Ibrahim, T, K.; Abdalla, A, N. Thermodynamic performance analysis of gas-turbine power-plant. International Journal of the Physical Sciences 6 (2011) 3539-3550.
Rendón, M, A.; Junior, A, R.; Biundini, NI, Z.; Malateaux, E, C. Dynamic modeling of combined cycle generation: gas turbine, boiler and steam turbine. ASME-ATI-UIT Conference on Thermal Energy Systems (2015).
Asgari, H. Modelling, simulation and control of gas turbines using artificial neural networks. Doctorate thesis, (2014).
Mantzaris, J.; Vournas, C. Modeling and stability of a single-shaft combined cycle power plant. International Journal of Thermodynamics 10, (2007) 1-9.
ROWEN, W, I. Simplified mathematical representation of heavy duty gas turbines. Journal of Power 105 (1983) 865-869.
Yee, S, K.; Milanovic, J, V.; Hughes, F, M. Overview and comparative analysis of gas turbine models for system stability studies. IEEE Transactions on Power Systems 23 (2008) 0885-8950.
Bank Tavakoli, M, R.; Vahidi, B.; Gawlik, W. An educational guide to extract the parameters of heavy duty gas turbines model in dynamic studies based on operational data. IEEE Transactions on Power Systems 24 (2009).
Kunitomi, K.; Kurita, A.; Okamoto, H.; Tada, Y.; Ihara, S.; Pourbeik, P.; Price, W, W.; Leirbukt, A, B.; Sanchez-Gasca, J, J. Modeling frequency dependency of gas turbine output. IEEE Power Conference proceeding 2, (2001) 678-683.
.De Sa, A.; Al Zubaidy, S. Gas turbine performance at varying ambient temperature, Applied Thermal Engineering 31 (2011) 2735-2739.
Basrawi, F.; Yomada, T.; Nakanishi, K.; Naing, S. Effect of ambient temperature on the performance of micro gas turbine with cogeneration system in coldregion. Applied Thermal Engineering 31 (2011) 1058-1067.
Emam Shalan, H.; Moustafa Hassan, M., A.; Bahgat, A, B, G. Parameter estimation and dynamic simulation of gas turbine model in combined cycle power plants based on actual operational data. Journal of American Science 7 (2011) 303-309.
Ponce Arrieta, F R..; Silva Lora, E E. Influence of ambient temperature on combined cycle power plant performance. Applied Energy 80 (2005) 261-272.
Ibrahim, T, K. Modeling and performance enhancements of a gas turbine combined cycle power plant. Doctorate thesis, Mechanical Engineering, University of Malaysia Pahang (2012).
Talah, D.; Bentarzi, H. Modeling and analysis of heavy-duty gas turbine based on frequency dependent model. International Conference on Electrical Engineering (2020) 1-4.
Talah, D.; Bentarzi, H. Comparative study on modeling of heavy duty gas turbines. International Conference on Renewable Energies (2019).
Meegahapola, L.; Flunn, D. Gas turbine modelling for power system dynamic simulation studies. Power Factory Applications for Power System Analysis (2014) 175-195.
Kunitomi, K.; Kurita, A.; Tada, Y.; Ihara, S.; Price, W, W.; Richardson, l, M.; Smith, G. Modeling combined cycle power plant for simulation of frequency excursions. IEEE Transactions on Power Systems 18 (2003) 724–729.
Hasan, N.; Nath Rai, J.; Arora, B, B. Optimization of CCGT power plant and performance analysis using MATLAB/Simulink with actual operational data. Springer Plus 3 (2014) 1-9.
Dhiman, P.; Saxena, A.; Akanksha.; Tiwari, D.; Agrahari, D. Review on exhaust temperature control of gas turbine. International Journal of Engineering and Innovative Technology 2 (2013).
Refbacks
- There are currently no refbacks.